Answer:
D. 1.8 × 102 newtons radially inward
Explanation:
The magnitude of the centripetal force is given by:

where
m is the mass of the object
v is the tangential speed
r is the radius of the circular trajector
In this problem, we have m = 4.0 kg, v = 6.0 m/s and r = 0.80 m, therefore substituting into the equation we get

The centripetal force is the force that keeps the object in a circular trajectory, so it is a force that is always directed inward (towards the centre of the circular path) and radially. Therefore, the correct answer is
D. 1.8 × 102 newtons radially inward
The correct answer is 1.25 because it is 1/2 of 1 1/2 and that is 1.25.

Since initial velocity is zero hence , u = 0
=> d = 1/2 * a * t2

on solving we get
d = 86.436 metres
Note ; Here Gravitational Acceleration is take as , g = 9.8 m/s2
<span>a) 1960 m
b) 960 m
Assumptions.
1. Ignore air resistance.
2. Gravity is 9.80 m/s^2
For the situation where the balloon was stationary, the equation for the distance the bottle fell is
d = 1/2 AT^2
d = 1/2 9.80 m/s^2 (20s)^2
d = 4.9 m/s^2 * 400 s^2
d = 4.9 * 400 m
d = 1960 m
For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes
d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T
d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s
d = 4.9 m/s^2 * 400 s^2 - 1000 m
d = 4.9 * 400 m - 1000 m
d = 1960 m - 1000 m
d = 960 m</span>
Is this a question or a statement. This statement would be incorrect. <span />