Answer:
[Co(NH₃)₄(H₂O)₂]³⁺: coordination number = 6.
[Cr(EDTA)]⁻: coordination number = 6.
[Pt(NH₃)₄]²⁺: coordination number = 4.
Na[Au(Cl)₂]: coordination number = 2.
Explanation:
In this complex, Co is bonded with 4 molecules of NH₃ (with 4 coordinate bonds, one bond for each molecule) and 2 molecules of H₂O (with 2 coordinate bonds, one bond for each molecule) forming the complex with 6 coordinate bonds.
∴ coordination number = 6.
In this complex, Cr is bonded with 1 molecules of EDTA (with 6 coordinate bonds, 4 O atoms and 2 N atoms in EDTA molecule).
∴ coordination number = 6.
In this complex, Pt is bonded with 4 molecules of NH₃ (with 4 coordinate bonds, one bond for each molecule).
coordination number = 4.
In this complex, Au is bonded with 2 atoms of Cl (with 2 coordinate bonds, one bond for each atom).
coordination number = 2.
Rocks are minerals, made up of many minerals. There are 3 types of rocks which are Igneous, Sedementary, and Metamorphic.
Water freezes at 0°C, 32°F, and 273°K. The only temperature warmer than the freezing point is 1°C.
Answer:
See explanation
Explanation:
a) The magnitude of intermolecular forces in compounds affects the boiling points of the compound. Neon has London dispersion forces as the only intermolecular forces operating in the substance while HF has dipole dipole interaction and strong hydrogen bonds operating in the molecule hence HF exhibits a much higher boiling point than Ne though they have similar molecular masses.
b) The boiling points of the halogen halides are much higher than that of the noble gases because the halogen halides have much higher molecular masses and stronger intermolecular forces between molecules compared to the noble gases.
Also, the change in boiling point of the hydrogen halides is much more marked(decreases rapidly) due to decrease in the magnitude of hydrogen bonding from HF to HI. The boiling point of the noble gases increases rapidly down the group as the molecular mass of the gases increases.