Answer:
15.28 L
Explanation:
Use combined gas law and rearrange formula
Change C to K
- Hope that helped! Please let me know if you need further explanation, as I can show you step by step.
Aldol condensation involves the reaction of an acid or base with a carbonyl group producing a nucleophile that attacks another carbonyl compound to yield a β-hydroxyaldehyde or β-hydroxyketone compound.
<h3>What is aldol condensation?</h3>
The aldol condensation is a reaction in organic chemistry in which there is a reaction between an acid or base and a carbonyl group which then serves as the nucleophile that attcks a second carbonyl to yield a β-hydroxyaldehyde or β-hydroxyketone compound.
The aldol condensation may be acid catalysed or base catlysed. The question is incomplete hence the complete mechanimsms can not be decuced.
Learn more about aldol condensation: brainly.com/question/9415260
Answer:

Explanation:
Percent yield is a ratio of the actual yield to the theoretical yield. It is found using this formula:

The actual yield is 12 liters, because that was actually produced in the lab.
The theoretical yield is 20 liters, because that was the expected yield.



For this reaction, the percent yield is 60%.
Answer:
10 kg of ice will require more energy than the released when 1 kg of water is frozen because the heat of phase transition increases as the mass increases.
Explanation:
Hello!
In this case, since the melting phase transition occurs when the solid goes to liquid and the freezing one when the liquid goes to solid, we can infer that melting is a process which requires energy to separate the molecules and freezing is a process that releases energy to gather the molecules.
Moreover, since the required energy to melt 1 g of ice is 334 J and the released energy when 1 g of water is frozen to ice is the same 334 J, if we want to melt 10 kg of ice, a higher amount of energy well be required in comparison to the released energy when 1 kg of water freezes, which is about 334000 J for the melting of those 10 kg of ice and only 334 J for the freezing of that 1 kg of water.
Best regards!