Answer:
The correct answer is "False".
Explanation:
The Elizabethan Era was a period of England's history that corresponds to the reign of Queen Elizabeth I (1558–1603). The Elizabethan Era is considered a golden age of England's history, and part of the Renaissance Era (1300-1600). The Elizabethan view of life changed drastically from the characteristic Medieval view of life. During Medieval times life was seen with a religiously perspective only, while during The Elizabethan Era more people start to view life with a scientific perspective.
Answer:
39.3%
Explanation:
CaF2 + H2SO4 --> CaSO4 + 2HF
We must first determine the limiting reactant, the limiting reactant is the reactant that yields the least number of moles of products. The question explicitly says that H2SO4 is in excess so CaF2 is the limiting reactant hence:
For CaF2;
Number of moles reacted= mass/molar mass
Molar mass of CaF2= 78.07 g/mol
Number of moles reacted= 11g/78.07 g/mol = 0.14 moles of Calcium flouride
Since 1 mole of calcium fluoride yields two moles of 2 moles hydrogen fluoride
0.14 moles of calcium fluoride will yield 0.14×2= 0.28 moles of hydrogen fluoride
Mass of hydrogen fluoride formed (theoretical yield) = number of moles× molar mass
Molar mass of hydrogen fluoride= 20.01 g/mol
Mass of HF= 0.28 moles × 20.01 g/mol= 5.6 g ( theoretical yield of HF)
Actual yield of HF was given in the question as 2.2g
% yield of HF= actual yield/ theoretical yield ×100
%yield of HF= 2.2/5.6 ×100
% yield of HF= 39.3%
Its true it affects the pH balance
Use the formula E=mc^2
energy given=<span>8.1 x 10^16 joules
</span>speed of <span>light = 3.00 × 10^8 m/s
</span>
plug in the values we'll get mass=<span>9.0 x 10-1 kg</span>
Phase changes happen as the temperature changes.
All matter can move from one state to another. It may require extreme temperatures or extreme pressures, but it can be done. Sometimes a substance doesn't want to change states. You have to use all of your tricks when that happens. To create a solid, you might have to decrease the temperature by a huge amount and then add pressure. For example, oxygen (O2) will solidify at -361.8 degrees Fahrenheit (-218.8 degrees Celsius) at standard pressure. However, it will freeze at warmer temperatures when the pressure is increased.