70.33 L is the volume of 10 moles of a gas at 300 K held at a pressure of 3.5 atm.
<h3>What is volume?</h3>
Volume is the percentage of a liquid, solid, or gas's three-dimensional space that it occupies.
Liters, cubic metres, gallons, millilitres, teaspoons, and ounces are some of the more popular units used to express volume, though there are many others.
We will use ideal gas law to find the volume
PV = nRT
Can also be written as
V = (nRT)/P
Where,
P = pressure
V = volume
n = amount of substance
R = ideal gas constant
T = temperature
Here, we have given
P = 3.5 atm
V = to find
n = 10 moles
R = 0.08206 L⋅atm/K⋅mol
T = 300k
Lets substitute the values
V = (10 × 0.08206 × 300)/3.5
V = 70.33 L
Learn more about volume
brainly.com/question/463363
#SPJ10
Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si *
= 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂
Answer:
8 electrons
Explanation:
Magnesium is present on group 2.
It has 2 valence electrons.
Electronic configuration of magnesium:
Mg₁₂ = 1s² 2s² 2p⁶ 3s²
1st energy level contain 2 electrons.(1s²)
2nd energy level contain 8 electrons. (2s² 2p⁶)
3rd energy level contain 2 electrons. (3s²)
3rs energy level of magnesium is called valence shell. It contain two valance electrons. Magnesium can easily donate its two valance electrons and get stable electronic configuration.
It react with halogens and form salt. For example,
Mg + Cl₂ → MgCl₂
I: Current
V: Voltage
R: resistance
you’re welcome ;)