Extensive properties, such as mass and volume, depend on the amount of matter being measured. Intensive properties, such as density and color, do not depend on the amount of the substance present.
Legumes are much easier to grow than other plants, and are more adaptable.
Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.
Look at the periodic table to find the charge on atoms.
Magnesium is +2 and Nitrogen is -3. Since there are two nitrogen charge 2*-3 = -6 there needs to be 3 Mg then (3*2+ = 6+) to pair with the two nitrogen.
3 Mg(+2) + 2 N(-3) = Mg3N2
Answer:
Concentration of OH⁻:
1.0 × 10⁻⁹ M.
Explanation:
The following equilibrium goes on in aqueous solutions:
.
The equilibrium constant for this reaction is called the self-ionization constant of water:
.
Note that water isn't part of this constant.
The value of
at 25 °C is
. How to memorize this value?
- The pH of pure water at 25 °C is 7.
![[\text{H}^{+}] = 10^{-\text{pH}} = 10^{-7}\;\text{mol}\cdot\text{dm}^{-3}](https://tex.z-dn.net/?f=%5B%5Ctext%7BH%7D%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-%5Ctext%7BpH%7D%7D%20%3D%2010%5E%7B-7%7D%5C%3B%5Ctext%7Bmol%7D%5Ccdot%5Ctext%7Bdm%7D%5E%7B-3%7D)
- However,
for pure water. - As a result,
at 25 °C.
Back to this question.
is given. 25 °C implies that
. As a result,
.