Answer:
Molar mass of MgCl2 is 95 g/mol
Mg = 24 g/mol and Cl = 35.5 ×2 = 71 g/mol
moles = mass given/ molar mass
= 2.7/95 = 0.028 mol
volume = 250/1000 = 0.25 dm3 (ml is the same as dm3)
molarity of MgCl2 = moles/volume
= 0.028/0.25
= 0.112 mol/dm3
Answer:
2.25g of NaF are needed to prepare the buffer of pH = 3.2
Explanation:
The mixture of a weak acid (HF) with its conjugate base (NaF), produce a buffer. To find the pH of a buffer we must use H-H equation:
pH = pKa + log [A-] / [HA]
<em>Where pH is the pH of the buffer that you want = 3.2, pKa is the pKa of HF = 3.17, and [] could be taken as the moles of A-, the conjugate base (NaF) and the weak acid, HA, (HF). </em>
The moles of HF are:
500mL = 0.500L * (0.100mol/L) = 0.0500 moles HF
Replacing:
3.2 = 3.17 + log [A-] / [0.0500moles]
0.03 = log [A-] / [0.0500moles]
1.017152 = [A-] / [0.0500moles]
[A-] = 0.0500mol * 1.017152
[A-] = 0.0536 moles NaF
The mass could be obtained using the molar mass of NaF (41.99g/mol):
0.0536 moles NaF * (41.99g/mol) =
<h3>2.25g of NaF are needed to prepare the buffer of pH = 3.2</h3>
The balanced net reactiion for the following half cells will be
Sn + Cr²⁺ ---> Sn²⁺ + Cr
<h3>What are
Half cells ?</h3>
A half cell is one of the two electrodes of an electrochemical cell.
An electrochemical cell comprises two half cells, where every half cell contains an electrode and an electrolyte.
A salt bridge or direct contact is needed to connect two half cells.
The balanced net reactiion for the given half cells will be
Sn + Cr²⁺ ---> Sn²⁺ + Cr
Learn more about Half cell here ;
brainly.com/question/1313684
#SPJ1
Use photomath. I would really recommend it! Hope this helps!
The response would become spontaneous if the value of ΔG° was negative.
According to the estimated value of ΔG°, it is shown that ΔG° value decreases as temperature value increases. The value shifts from being more favorable to being less favorable. It would appear that the value of ΔG° would be negative at a specific temperature, causing the reaction to occur spontaneously.
The reaction is in an equilibrium state if ΔG = 0. If ΔG < 0, the reaction is spontaneous in the direction written. The relationship between terms from the equilibrium is paralleled by the relevance of the sign of a change in the Gibbs free energy.
Learn more about ΔG° here:
brainly.com/question/14512088
#SPJ4