It is.
An acid will be strong when its conjugated base is highly stable, and vice-versa.
That can occur for instance through electronic delocalization.
Answer:
a) The work done is 10.0777 kJ
b) The water's change in internal energy is -122.1973 kJ
Explanation:
Given data:
1 mol of liquid water
T₁ = temperature = 100.9°C
P = pressure = 1 atm
Endothermic reaction
T₂ = temperature = 100°C
1 mol of water vapor
VL = volume of liquid water = 18.8 mL = 0.0188 L
VG = volume of water vapor = 30.62 L
3.25 moles of liquid water vaporizes
Q = heat added to the system = -40.7 kJ
Questions: a) Calculate the work done on or by the system, W = ?
b) Calculate the water's change in internal energy, ΔU = ?
Heat for 3.25 moles:

The work done:

The change in internal energy:

Sodium and magnesium oxides are alkaline. Aluminium oxides are amphoteric (reacting both as a base or acid). Silicon, phosphorus, sulfur, and chlorine oxides are acidic. Some non-metal oxides, such as nitrous oxide (N2O) and carbon monoxide (CO), do not display any acid/base characteristics.
Answer:
Hey
of course, the damage of a collision depends upon how fast to objects are moving at each other and how strong they are. If you have two tanks moving at each other 2 miles per hour it will be very little damage and the ->shape<- will not change much, maybe a dint or two. But if two balloons filled with water are moving at each other 5000 mph they will completely evoporate in a burst of light, and their ->shape<- will change very much. This is how shape and motion are related.
Hope it helped
spiky bob your answerer
High tide is when the ocean rises