The mass defect for the isotope thorium-234 if given mass is 234.04360 amu is 1.85864 amu.
<h3>How do we calculate atomic mass?</h3>
Atomic mass (A) of any atom will be calculated as:
A = mass of protons + mass of neutrons
In the Thorium-234:
Number of protons = 90
Number of neutrons = 144
Mass of one proton = 1.00728 amu
Mass of one neutron = 1.00866 amu
Mass of thorium-234 = 90(1.00728) + 144(1.00866)
Mass of thorium-234 = 90.6552 + 145.24704 = 235.90224 amu
Given mass of thorium-234 = 234.04360 amu
Mass defect = 235.90224 - 234.04360 = 1.85864 amu
Hence required value is 1.85864 amu.
To know more about Atomic mass (A), visit the below link:
brainly.com/question/801533
Answer:
131.5 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
First, we will calculate the standard enthalpy of the reaction (ΔH°).
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)
) - 1 mol × ΔH°f(CaCO₃(s)
)
ΔH° = 1 mol × (-634.9 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1207.6 kJ/mol)
ΔH° = 179.2 kJ
Then, we calculate the standard entropy of the reaction (ΔS°).
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)
) - 1 mol × S°(CaCO₃(s)
)
ΔS° = 1 mol × (38.1 J/mol.K) + 1 mol × (213.8 J/mol.K) - 1 mol × (91.7 J/mol.K)
ΔS° = 160.2 J/K = 0.1602 kJ/K
Finally, we calculate the standard Gibbs free energy of the reaction at T = 25°C = 298 K.
ΔG° = ΔH° - T × ΔS°
ΔG° = 179.2 kJ - 298 K × 0.1602 kJ/K
ΔG° = 131.5 kJ
I think the answer would be yes. if my math is correct 84,596 divided by 29 equals 2,917 sickles. 2,917 sickles is equal to 172 galleon. therefore he would have enough to buy the 70 galleon broomstick. hopefully i did this right and it helped!
<span>The molar mass is 169.09
304.3g/169.09g = 1.799mol which rounds to 1.800 mol</span>