Answer:
1-butanol has higher boiling point mainly due to presence of hydrogen bonding.
Explanation:
Diethyl ether is a polar aprotic molecule due to presence of polar C-O-C moiety. Hence only dipole-dipole intermolecular force exist between diethyl ether molecules.
1-butanol is a polar protic molecule due to presence of C-OH moiety. Therefore dipole-dipole force along with hydrogen bonding exist between 1-butanol molecules.
So, intermolecular force is higher in 1-butanol as compared to diethyl ether. Hence more temperature is required to break intermolecular forces of 1-butanol to boil as compared to diethyl ether.
So, 1-butanol has higher boiling point mainly due to presence of hydrogen bonding.
<em>Kinetic molecular Theory points:</em>
1. Gases molecules are always in random motion.
2. Gases molecule collide with each other and with the walls of container.
3. Gases molecules total volume is negligible as compare to container.
4. There is no attractive forces between the gases particles
5. K.E is directly proportional to absolute temperature.
<em>Why liquid are denser than gases according to K.M.T:</em>
1. As gases are in random motion, so they have weak forces/ no attractive forces (Acc. to KMT) due to this they are apart as compare to liquid which have stronger forces are closer to each other. So volume of gases will be greater. d= m/v
2. K. E of gases are greater than liquid due to this gases move randomly, apart from each another. Due to this their volume will be greater. d= m/v
3. Gases molecules total volume is negligible as compare to container which show that gases molecules have large spaces between them which causes lower in density.
The least amount of energy required to activate atoms or molecules to a state in which they can undergo a chemical reaction.
Answer:
Explanation:
THE QUESTION SHOULD BE
Write the equilibrium constant expression, Kc, for the following reaction: If either the numerator or denominator is 1, please enter 1 CaCO3(s).
CaCO3(s) <=> Ca2+(aq) + CO32-(aq)
Write the mathematical form of the concentration of the products, then divide it by the concentration of the reactants as follows
Kc =[Ca2+]^1 . [CO32-]^1 / [CaCO3]^1