Answer:
The natural phenomenon used to describe the length of a meter is the speed of light. The length of a meter is the length a light path travels in 1/(299792458) seconds through a vacuum.
The definition is better due to the uncertainty involved in the use of the length of a standard meter stick because the length of the meter stick could change due to atmospheric conditions from place to place
Explanation:
Answer:
1.70 g.cm⁻³
Solution:
Data Given;
Mass = 84.7 g
Volume = 49.6 cm³
Density = ?
Formula Used;
Density = Mass ÷ Volume
Putting values,
Density = 84.7 g ÷ 49.6 cm³
Density = 1.70 g.cm⁻³
Considering ideal gas:
PV= RTn
T= 25.2°C = 298.2 K
P1= 637 torr = 0.8382 atm
V1= 536 mL = 0.536 L
:. R=0.082 atm.L/K.mol
:. n= (P1V1)/(RT) = ((0.8382 atm) x (0.536 L))/
((0.082 atmL/Kmol) x (298.2K))
:. n= O.0184 mol
Then,
P2= 712 torr = 0.936842 atm
V2 = RTn/P2 = [(0.082atmL/
Kmol) x (298.2K) x (0.0184mol) ]/(0.936842atm)
:.V2 = 0.4796 L
OR
V2 = 479.6 ml
Answer:
a. BH₃
Explanation:
According to the octet rules, atoms reach stability when are surrounded by eight electrons in their valence shell when they combine to form a chemical compound.
From the options, the only compound in which the central atom does not meet the octet rules is BH₃. The central atom is boron (B), which has 3 electrons in its valence shell. When B is combined with hydrogen (H), 3 electrons from the 3 atoms of H are added. The total amount of electrons is 6, fewer than 8 electrons needed to meet the rule.
hope this helps
Answer:
curium
−
243
,
252
/
99
Es,
251
/
98
Cf,
214
/
82
Pb
Explanation: Im not very good with this but here ya go!