I think its true, I think.
Answer:
Solution given:
height [H]=25m
initial velocity [u]=8.25m/s
g=9.8m/s
now;
a. How long is the ball in flight before striking the ground?
Time of flight =?
Now
Time of flight=
substituting value
- =

- =2.26seconds
<h3>
<u>the ball is in flight before striking the ground for 2.26seconds</u>.</h3>
b. How far from the building does the ball strike the ground?
<u>H</u><u>o</u><u>r</u><u>i</u><u>z</u><u>o</u><u>n</u><u>t</u><u>a</u><u>l</u><u> </u>range=?
we have
Horizontal range=u*
<h3>
<u>The ball strikes 18.63m far from building</u>. </h3>
If time is specified, the distance may be estimated in constant acceleration using the formula: X=(at2)/2 if the beginning velocity is 0. (A automobile begins from a stop...) As a result, X=(6*10*10)/2=600/2 = 300 m.
<u>Answer:</u>
Adaption to stress occurs in three stages: alarm, fight or flight, exhaustion.
<u>Explanation:</u>
According to the general adaptation syndrome theory proposed by Hans Selye, the adaption to stress occurs in three stages which are:
1. alarm
2. fight or flight
3. exhaustion
This is a process which comprises of three stages that describes the physiological changes which a body undergoes when in stress (an emotional, mental and physical human response to a specific stimulus).