Answer: 0.0146m
Explanation: The formula that defines the velocity of a simple harmonic motion is given as
v = ω√A² - x²
Where v = linear velocity, A = amplitude = 1.69cm = 0.0169m, x = displacement.
The maximum speed of a simple harmonic motion is derived when x = A, hence v = ωA
One half of maximum speed = speed of motion
3ωA/2 = ω√A² - x²
ω cancels out on both sides of the equation, hence we have that
A/2 = √A² - x²
(0.0169)/2 = √(0.0169² - x²)
0.00845 = √(0.0169² - x²)
By squaring both sides, we have that
0.00845² = 0.0169² - x²
x² = 0.0169² - 0.00845²
x² = 0.0002142
x = √0.0002142
x = 0.0146m
if you multiply the mass of an object by the acceleration due to gravity, you will obtain the object's weight. mass is an intrinsic property of matter
looks like a good answer ...
Answer:
(a) T= 38.4 N
(b) m= 26.67 kg
Explanation:
We apply Newton's second law:
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Kinematics
d= v₀t+ (1/2)*a*t² (Formula 2)
d:displacement in meters (m)
t : time in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
v₀=0, d=18 m , t=5 s
We apply the formula 2 to calculate the accelerations of the blocks:
d= v₀t+ (1/2)*a*t²
18= 0+ (1/2)*a*(5)²
a= (2*18) / ( 25) = 1.44 m/s²
to the right
We apply Newton's second law to the block A
∑Fx = m*ax
60-T = 15*1.44
60 - 15*1.44 = T
T = 38.4 N
We apply Newton's second law to the block B
∑Fx = m*ax
T = m*ax
38.4 = m*1.44
m= (38.4) / (1.44)
m = 26.67 kg
Explanation:
Initial speed(u)= 0 m/s (Ball is dropped)
time(t)= 0.75 s
acceleration(a)= 10 m/s² (gravity)
Final speed(v)= u+at
v=0+(10)× 0.75
v=7.5 m/s
Speed is 7.5 m/s