Answer:
55.6 nC
Explanation:
The electric field at the surface of a charged sphere has the same expression of the electric field produced by a single point charge located at the centre of the sphere and having the same charge of the sphere, so it is given by

where
is the Coulomb's constant
Q is the charge on the sphere
r is the radius of the sphere
In this problem we know
E = 890 N/C is the magnitude of the electric field on the sphere
r = 0.750 m is the radius of the sphere
So by re-arranging the equation we can find the net charge on the sphere:

Force = (mass) x (acceleration)
Mass = (force) / (acceleration)
There was 150N of force in one direction and 100N of 'force' in
the other direction. The net force on the object was (150 - 100) = 50N .
Acceleration = (change in speed) / (time for the change)
= (10 m/s) / (5s) = 2 m/s²
Mass = (net force) / (acceleration) = (50 N) / (2 m/s²) = 25 kilograms
When we double the distance between a source of light and the
surface on which it falls, the amount of illumination on the surface
decreases to <em>one fourth (1/4, 0.25))</em> of the original illumination.
Answer:
19.62 ms
Explanation:
t = Time taken = 2 s
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s² (downward direction is taken as positive)
Equation of motion

The speed of the pebble when it hit the water is 19.62 ms
Lithium-Ion batteries are commonly used in portable electronics and electric vehicles. These rechargeable batteries have two electrodes: one that's positively charged and contains lithium and another negative one that's typically made of graphite.