The answer would be C: energy is released to form radiation.
Answer:
A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.
Explanation:
A simple substitution reaction or simple displacement reaction, called single-displacement reaction, is a reaction in which an element of a compound is substituted by another element involved in the reaction. The starting materials are always pure elements and an aqueous compound. And a new pure aqueous compound and a different pure element are generated as products. The general form of a simple substitution reaction is:
AB + C → A +BC
where C and A are pure elements; C replaces A within compound AB to form a new co, placed CB and elementary A.
So, in a Single replacement reaction an uncombined element replaces an element.
<u><em>A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.</em></u>
The rate law depicts the effect of concentration on reaction rate. Second mechanism 2NO(g) ⇄ N₂O₂(g) [fast], N₂O₂(g) + O₂(g) → 2NO₂(g) [slow] is most reasonable. Thus, option b is correct.
<h3>What is rate law?</h3>
Rate law and equation give the rate at which the reaction takes place under the influence of the concentration of the reactants. The balanced chemical reaction is given as,
2NO(g) + O₂(g) → 2NO₂(g)
The rate of the equation is given as,
rate = k [NO]² [O₂]
In a multi-step chemical reaction, the slowest step is the rate-determining step. The second mechanism is given as,
2NO (g) → N₂O₂ (g) [fast]
N₂O₂(g) +O₂(g) → 2NO₂ (g) [slow]
Rate is given as,
rate = k [N₂O₂] [O₂]
Therefore, option b. the second mechanism is the most reasonable.
Learn more about rate law, here:
brainly.com/question/14779101
#SPJ4
the answer is in the picture
Explanation:
21. The given molecule for cracking is tetradecane.
On cracking it forms one mole of decane (C10H22) and two moles of ethene gas.
The chemical equation is shown below:

22. The essential condition for the formation of an ester is the reaction of alcohol and acid in presence of concentrated sulfuric acid.
Thus among the given options, the first option is the correct one.
23. Isomers of butanol are shown below:
It is 2-butanol.
The position of -OH group changes to the second carbon.