<h3>
Answer:</h3>
0.75 moles NaOH
<h3>
Explanation:</h3>
We are given;
Volume of NaOH solution = 2.5 Liters
Molarity of NaOH = 0.300 M
We are required to calculate the moles of NaOH
We need to establish the relationship between moles, molarity and volume of a solution.
That would be;
Concentration/molarity = Moles ÷ Volume
Therefore;
Moles = Concentration × Volume
Thus;
Moles of NaOH = 0.300 moles × 2.50 L
= 0.75 moles
Therefore, the number of moles of NaOH is 0.75 moles
Answer:
5 mph
Explanation:
100 miles, 20 hours (divide by 2)
50 miles, 10 hours (divide by 2)
25 miles, 5 hours (divide by 2)
divide both sides by 5
5 miles, 1 hour
The reactant is Mercury (II) Oxide while the products are Mercury and Oxygen separately.
This is because the reactants are typically always on the left side of the yields symbol. In this decomposition reaction, it would still be the same as at the end of the reaction, there were to products produced: Mercury and Oxygen.
Products tend to always be on the right side of the yields symbol, they're what comes out of a reaction no matter what type.
Hope this helps!
Answer:
d= 14.007 amu
Explanation:
Abundance of N¹⁴ = 99.63%
Abundance of N¹⁵ = 0.37%
Atomic mass of N¹⁴ = 14.003 amu
Atomic mass of N¹⁵ = 15.000 amu
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (14.003 × 99.63)+(15.000× 0.37) /100
Average atomic mass = 1395.12 + 5.55 / 100
Average atomic mass = 1400.67/ 100
Average atomic mass = 14.007 amu.
Answer:
An atom of neon-20 has one fewer proton and two fewer neutrons than an atom of sodium-23.
Explanation:
Neon - 20 and Sodium - 23
Neon - 20
Protons = 10
Neutrons = 10
Sodium - 23
Protons = 11
Neutrons = 12
With the information above and checking the options;
An atom of neon-20 has one fewer proton and two fewer neutrons than an atom of sodium-23.
This option is correct.