Answer:
The boiling point of sample X and sample Y are exactly the same.
Explanation:
The difference between sample X and sample Y is that they occupy different volumes. However, they both contain pure water. Remember that pure water has uniform composition irrespective of its volume.
Volume does not affect the boiling point as long as the volume is small enough not to give rise to significant pressure changes in the liquid.
The boiling point of a liquid is the temperature at which the pressure exerted by the surroundings upon a liquid is equaled by the pressure exerted by the vapour of the liquid; under this condition, addition of heat results in the transformation of the liquid into its vapour without raising the temperature.
It can be clearly seen from the above that the volume of a solution of pure water does not affect its boiling point hence sample X and sample Y will have the same boiling point.
Answer:
The concentration of chloride ions in the final solution is 3 M.
Explanation:
The number of moles present in a solution can be calculated as follows:
number of moles = concentration in molarity * volume
In 100 ml of a 2 M KCl solution, there will be (0.1 l * 2mol/l) 0.2 mol Cl⁻
For every mol of CaCl₂, there are 2 moles of Cl⁻, then, the number of moles of Cl⁻ in 50 l of a 1.5 M solution will be:
number of moles of Cl⁻ = 2 * number of moles of CaCl₂
number of moles of Cl⁻ = 2 ( 50 l * 1.5 mol / l ) = 150 mol Cl⁻
The total number of moles of Cl⁻ present in the solution will be (150 mol + 0.2 mol ) 150.2 mol.
Assuming ideal behavior, the volume of the final solution will be ( 50 l + 0.1 l) 50.1 l. The molar concentration of chloride ions will be:
Concentration = number of moles of Cl⁻ / volume
Concentration = 150.2 mol / 50.1 l = 3.0 M
Answer:
2H2O2→2H2O+O2
Explanation:
This reaction is of the spontaneous decomposition of hydrogen peroxide down into water and oxygen.
Add 2 molecules of hydrogen peroxide and 2 molecules of water. Since oxygen is naturally diatomic, the total number of atoms of each element is now the same on both sides of the equation so it is balanced.
2H2O2→2H2O+O2
A chemical element that has an atomic number less than 58 and an atomic mass greater than 135.6m is barium (atomic no. 56 and atomic mass137.13 ) and lanthanum (atomic no. 57 and atomic mass 135.6).
<h3>Give a brief introduction about Barium and Lanthanum.</h3>
Barium is an element with the symbol Ba and atomic number 56. It is an alkaline earth metal that is soft and silvery, and it is the fifth element in group 2. Barium is never found in nature as a free element due to its extreme chemical reactivity. Oil well drilling fluid uses barium sulfate as an insoluble ingredient. It is employed as an X-ray radiocontrast agent in a purer form to image the human gastrointestinal tract. Barium compounds that dissolve in water have been employed as rodenticides despite being hazardous.
Chemical element lanthanum has the atomic number 57 and the symbol La. It is a silvery-white, ductile, soft metal that slowly tarnishes when exposed to air. It serves as the eponym for the group of 15 related elements in the periodic table between lanthanum and lutetium, of which lanthanum is the first and prototype. The rare earth elements traditionally include lanthanum.
Learn more about elements here:-
brainly.com/question/6335008
#SPJ9
Its magnifying power is: 4X 5X 9X 20X. A 4-inch, f/5 telescope has a 1-inch eyepiece focal. Its magnifying power is 9x. This answer has been confirmed as correct and helpful.