1. The third option is the least soluble in water because it is the chain with the most number of hydrocarbons. Next is the second option while the first one is the most soluble.
2. Statements 1 and 2 are true. The third option is not true all the time because it depends on the structure of the compound.
Answer:
Its official chemical symbol is O, and its atomic number is 8, which means that an oxygen atom has eight protons in its nucleus. ... Oxygen is normally found as a
Answer:
See explanation
Explanation:
A dipole refers to a bond in which its two ends have opposite charges. A dipole results from a large difference in electronegativity between two atoms in a bond.
For instance, consider the bond between hydrogen and chlorine in HCl. The electronegativity of hydrogen is 2.2 while that of chlorine is 3.16. The significant electronegativity difference between the two atoms leads to a charge separation.
A partial positive charge appears on the atom that is less electronegative (hydrogen) while a negative charge appears on the more electronegative atom (chlorine).
This charge separation occurs because the shared electrons of the bond are more closely attracted to chlorine making it partially negative compared to hydrogen. A dipole moment now exists in the H-Cl bond hence the molecule is said to have a dipole.
Answer:
B There are two grams of hydrogen for each gram of carbon in this compound.
Explanation:
The second option is a wrong interpretation of this chemical representation of formaldehyde.
Formaldehyde is an organic compound with the formula CH₂O.
As this is the simplest formula of the compound, it is the empirical formula. Also, the formula is the actual one for the compound and it is the molecular formula.
Chemically, the formula shows 1 mole of carbon, 2 moles of H and 1 mole of oxygen in the compound.
- A mole of a substance is more a less a unit of measurement in chemistry and it is the amount of substance that contains the avogadro's number of particles.
This ratio is not the mass of chemical species in the compound. You cannot tell the mass of elements in a compound by merely looking at the formula.