Answer:
14 cm
Explanation:
F = (frac{uv}{u – v})
F = +ve
v = -ve
30 = (frac {25 {times} (-v)}{25 – (-v)})
v = (frac {25 {times} (-v)}{25+v})
v = 14cm
(Note that either negative or positive values go to show the positioning and hence, they are not a strong necessity in your final answer.)
So happy that i could help you!
Now this question could turn out to be easy for you!!
average velocity is vector displacement / time
time is "almost exactly one hour"
disp = -10m
v= -10/1x60x60 = -1/360m/s
This is the same question as the one previously but with more details, so I will just use my previous answer.
1800 to 1820 is 20 minutes.1830 to 1838 is 8 minutes.1840 to 1905 is 25 minutes.
The total time travelled is 20+8+25 = 53 minutes = 3180 seconds.
The distance between Glasgow and Edinburgh is 28 + 12 + 34 = 74 km = 74000 m.
So, the average speed is 74000m/3180s = 23.27 m/s (4 s.f.)
Answer:
Explanation:
a )
We shall apply the concept of impulse .
Impulse = force x time = change in momentum
= 5 x 4 = 2 ( V - 3 ) , where V is final velocity of the object
20 = 2V - 6
V = 13 m /s
b )
Impulse applied = - 7 x 4 = - 28 kg m/s ( negative as direction of force is opposite motion )
If v be the final velocity
2 x 3 - 28 = 2 v ( initial momentum - change in momentum = final momentum )
- 22 = 2v
v = - 11 m /s
object will move with 11 m /s in opposite direction .
As a wave moves through a medium, particles are displaced and return to their normal position after the wave passes.
Explanation:
A wave is a traveling disturbance that carries energy from one location to another. All waves move in straight lines outward and away from the source of a disturbance. Like the radiating circular ripples, the waves of water carry energy away from where a rock was dropped into the pond.
Waves can move as a single pulse or as a continuous series of waves, carrying energy away from its source. A pulse is a single disturbance, wave, or ripple that moves outward from the point of disturbance. A train of waves are many waves emitted over and over again from a single source.
As waves travel through matter, they will temporarily displace the molecules or particles in matter up-and-down or side-to-side. Waves move the energy but they do not carry the matter with them longitudinally as they move through matter. Once the disturbance passes, the medium will return to its original state or position.
Therefore, as the waves move through a medium, particles are displaced and return to their normal position after the wave passes.