Answer:11 km/s
Explanation:
Given
Escape velocity at the surface of earth is 11 km/s
Escape velocity is given by
Escape velocity at the surface of earth
--------------------1
If Escape velocity is three times and the radius is also the three times
i.e.
Answer:
Explanation:
The concept of elastic and inelastic demand is applied.
for an elastic demand, the elasticity must be greater than 1 and for an Inelastic demand, the elasticity must be less than 1.
The steps and appropriate calculation is as shown in the attached file.
Atmosphere
Atmospheric gas from prehistoric eras is found trapped in glaciers in the form of bubbles. These gas bubbles are the basis of studying ice cores as they provide us with accurate estimates of the conditions of past climates. The bubbles allow us to determine the composition of atmospheric air, such as the carbon dioxide and methane concentrations, as well as allow us to determine air temperatures in the past.
Answer: 4.7m/s²
Explanation:
According to newton's first law,
Force = mass × acceleration
Since we are given more the one force, we will take the resultant of the two vectors.
Mass = 2.0kg
F1+F2 = (3i-8j)+(5i+3j)
Adding component wise, we have;
F1+F2 = 3i+5i-8j+3j
F1+F2 = 8i-5j
Resultant of the sum of the forces will be;
R² = (8i)²+(-5j)²
Since i.i = j.j = 1
R² = 8²+5²
R² = 64+25
R² = 89
R = √89
R = 9.4N
Our resultant force = 9.4N
Substituting in the formula
F = ma
9.4 = 2a
a = 9.4/2
a = 4.7m/s²
Therefore, magnitude of the acceleration of the particle is 4.7m/s²
<u>We are Given:</u>
Mass of the block (m) = 500 grams or 0.5 Kg
Initial velocity of the block (u) = 0 m/s
Distance travelled by the block (s) = 8 m
Time taken to cover 8 m (t)= 2 seconds
Acceleration of the block (a) = a m/s²
<u>Solving for the acceleration:</u>
From the seconds equation of motion:
s = ut + 1/2* (at²)
<em>replacing the variables</em>
8 = (0)(2) + 1/2(a)(2)²
8 = 2a
a = 4 m/s²
Therefore, the acceleration of the block is 4 m/s²