Explanation:
Normal moles of
= volume × normal concentration
= 4.7 × 0.139 = 0.6533 mol
Moles of
in hyponatremia blood = volume × hyponatremia concentration
= 4.7 × 0.116 = 0.5452 mol
Moles of NaCl to be added = moles of extra
needed
= 0.6533 mol - 0.5452 mol = 0.1081 mol
Mass of NaCl = moles × molar mass of NaCl
= 0.1081 mol × 58.443
= 6.317g
= 6.32 g (approx)
Thus, we can conclude that mass of sodium chloride would need to be added to the blood is 6.32 g.
Answer is: same orbital, but have different spin directions.
The principal quantum number (n) is one of four quantum numbers which are assigned to each electron in an atom to describe that electron's state.
For principal quantum number n=2:
1) azimuthal quantum number (l) can be l = 0...n-1:
l = 0, 1.
The azimuthal quantum number determines its orbital angular momentum and describes the shape of the orbital.
2) magnetic quantum number (ml) can be ml = -l...+l.
ml = -1, 0,+1.
Magnetic quantum number specify orientation of electrons in magnetic field and number of electron states (orbitals) in subshells.
3) the spin quantum number (ms), is the spin of the electron.
ms = +1/2, -1/2.
I think unbalanced? not sure sorry
Note that this is occurring at STP, where 22.4L of any gas is equal to 1mol of that gas.
First, convert the liters of O₂ to moles of O₂ using the conversion factor 22.4LO₂ = 1molO₂.
8.6LO₂ × 1molO₂/22.4LO₂
= 8.6/22.4
≈ 0.3839molO₂
Next, convert moles of O₂ to moles of H₂O. In the balanced equation, the coefficients show that there are 2 moles of H₂O for every mole of O₂. So, use the conversion factor 1molO₂ = 2molH₂O.
0.3839molO₂ × 2molH₂O/1molO₂
= 0.3839 × 2
= 0.7678molH₂O
Finally, convert the moles of H₂O to liters of H₂O using the same conversion factor from before, 22.4LH₂O = 1molH₂O.
0.7678molH₂O × 22.4LH₂O/1molH₂O
= 0.7678 × 22.4
≈ 17LH₂O
So, the answer is 17 liters of gaseous water is collected! Note that its rounded to 17 because the measurement given in the problem has 2 sig figs. Hope that helps! :)