The name of the compound by using the <u>IUPAC nomenclature of organic compounds</u> is 1 -octene. The correct option is the last option - 1-octene.
<h3>Nomenclature of Organic compounds</h3>
From the question, we are to determine the name of the given molecule.
To name the compound, we will follow the IUPAC rules.
Some of IUPAC rules are
- Find the longest continuous carbon chain. Determine the root name for this parent chain.
- For Alkenes (organic compounds with double bond), number the chain of carbons that includes the C=C so that the C=C has the lower position number. Change “ane” to “ene” and assign a position number to the first carbon of the C=C.
The given compound has 8 carbons and a double bond. The root name of the compound is octane.
By <u>IUPAC rules</u>, the compound is an <u>Octene</u>.
Since the double bond is between carbon-1 and carbon-2. The compound becomes 1-octene.
Hence, the name of the compound by using the <u>IUPAC nomenclature of organic compounds</u> is 1 -octene. The correct option is the last option - 1-octene.
Learn more on Nomenclature of Organic compounds here: brainly.com/question/26754333
The diagram for the compound is attached below.
<u>Answer:</u> 6.57 L of solution can be made.
<u>Explanation:</u>
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
.....(1)
Given values:
Molarity of LiBr = 3.5 M
Moles of LiBr = 23 moles
Putting values in equation 1, we get:

Hence, 6.57 L of solution can be made.
Answer:
water, when the metastable state is reached, is cooled below the zero temperature. It freezes abruptly. this is called metastable. They are not at equilibrium per se; as at negative temperatures the only equilibrium state of water is ice.
Explanation:
<span>Data:
pH = 5.2
[H+] = ?
Knowing that: (</span><span>Equation to find the pH of a solution)</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
<span>
Solving:
</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
![5.2 = - log [H+]](https://tex.z-dn.net/?f=5.2%20%3D%20-%20log%20%5BH%2B%5D)
Knowing that the exponential is the opposite operation of the logarithm, then we have:
![[H+] = 10^{-5.2}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-5.2%7D)
Answer:
positive H and negative S
Explanation:
For a reaction to be spontaneous, the absolute best combination is a negative Delta H and a positive Delta S. When they are both positive, the reaction is only spontaneous at higher temperatures. When they are both negative, the reaction is only spontaneous at lower temperatures. and again if a catalyst is added to the reaction, the activation energy is lowered because a lower-energy transition state is formed. The catalyst does not affect the energy of the reactants or products (and thus does not affect ΔG).
So from these discussions
Ea does not affect G value at all (whether +Ea or -Ea).
And for product to be formed the reaction should be spontaneous, where H is negative and S positive else the reaction will yield low product.