Electric potential = work done/charge of electron = 2.18×10⁻¹⁸/1.6×10⁻¹⁹
= 13.625 V
Because it stretches and makes your muscles ready for the activity
Answer:
The third particle should be at 0.0743 m from the origin on the negative x-axis.
Explanation:
Let's assume that the third charge is on the negative x-axis. So we have:

We know that the electric field is:

Where:
- k is the Coulomb constant
- q is the charge
- r is the distance from the charge to the point
So, we have:

Let's solve it for r(3).
Therefore, the third particle should be at 0.0743 m from the origin on the negative x-axis.
I hope it helps you!
Complete Question
A thin, horizontal, 12-cm-diameter copper plate is charged to 4.4 nC . Assume that the electrons are uniformly distributed on the surface. What is the strength of the electric field 0.1 mm above the center of the top surface of the plate?
Answer:
The values is 
Explanation:
From the question we are told that
The diameter is 
The charge is 
The distance from the center is 
Generally the radius is mathematically represented as

=> 
=> 
Generally electric field is mathematically represented as
![E = \frac{Q}{ 2\epsilon_o } [1 - \frac{k}{\sqrt{r^2 + k^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7BQ%7D%7B%202%5Cepsilon_o%20%7D%20%5B1%20-%20%5Cfrac%7Bk%7D%7B%5Csqrt%7Br%5E2%20%2B%20%20k%5E2%20%7D%20%7D%20%5D)
substituting values
![E = \frac{4.4 *10^{-9}}{ 2* (8.85*10^{-12}) } [1 - \frac{(1.00 *10^{-4})}{\sqrt{(0.06)^2 + (1.0*10^{-4})^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7B4.4%20%2A10%5E%7B-9%7D%7D%7B%202%2A%20%288.85%2A10%5E%7B-12%7D%29%20%7D%20%5B1%20-%20%5Cfrac%7B%281.00%20%2A10%5E%7B-4%7D%29%7D%7B%5Csqrt%7B%280.06%29%5E2%20%2B%20%20%281.0%2A10%5E%7B-4%7D%29%5E2%20%7D%20%7D%20%5D)

I<span>n </span>direct current<span> (</span>DC), the electric charge (current<span>) only flows in one direction. Electric charge in </span>alternating current<span> (</span>AC<span>), on the other hand, changes direction periodically. The voltage in </span>AC<span> circuits also periodically reverses because the </span>current<span> changes direction.</span>