Answer:
The law of conservation of energy can be seen in these everyday examples of energy transference: Water can produce electricity. Water falls from the sky, converting potential energy to kinetic energy. ... The cue ball loses energy because the energy it had has been transferred to the 8 ball, so the cue ball slows down.
Answer:

Explanation:
For this exercise we must use the principle of conservation of energy
starting point. The proton very far from the nucleus
Em₀ = K = ½ m v²
final point. The point where the proton is stopped (v = 0)
Em_f = U = q V
where the potential is
V = k Ze / r²
Let us consider that all the charge of the nucleus is in the center, therefore r is the distance from this point to the proton that is approaching
Energy is conserved
Em₀ = Em_f
½ m v² = e (
)
with this expression we can find the closest approach distance (r)
The answer is a.) the ocean is colder than the land.
Thus, Jorge visits Panama city, Florida during the month of may. he feels a shore breeze blowing from the ocean on the beach because Jorge visits Panama city, Florida during the month of may. he feels a shore breeze blowing from the ocean on the beach.
Hope it helps!
Answer: 14.28 m/s
Explanation:
Assuming the girl is spinning with <u>uniform circular motion</u>, her centripetal acceleration
is given by the following equation:
(1)
Where:
is the <u>centripetal acceleration</u>
is the<u> tangential speed</u>
is the <u>radius</u> of the circle
Isolating
from (1):
(2)
<u />
Finally:
This is the girl's tangential speed