Answer: 11,000 J
Explanation:
In an isothermal process,

(1)
Note that, the energy used in heat transfer is not available for work. So, the amount of energy unavailable for work is equal to the energy used in heat transfer.
To obtain the amount of energy in heat transfer, we multiply both sides of equation (1) by the denominator of the right side of (1) so that
amount of energy in heat transfer = (entropy increase)(temperature)
= (25 J/K)(440 K)
= 11,000 J
Since the amount of energy unavailable for work is equal to the amount of energy in the heat transfer, therefore the amount of energy unavailable for work is 11,000 J.
Answer:
In these reactions the products are higher in energy than the reactants. ... This barrier is due to the fact that to make CO2 and H2O we have to break 4 carbon-hydrogen bonds and some ...
Explanation:
It's a chemical chemical change
Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.
Your teacher is right. The moon can be seen early in the morning sometimes and late at night. Different phases are only visible on certain days as one day might be full quarter, the next full moon, the next first quarter, etc.