Answer: 1: (A) They allow electrons to move freely between them. 2: (C) they change their positions relative to one another.
Explanation:
Answer:
It corresponds to a distance of 100 parsecs away from Earth.
Explanation:
The angle due to the change in position of a nearby object against the background stars it is known as parallax.
It is defined in a analytic way as it follows:

Where d is the distance to the star.
(1)
Equation (1) can be rewritten in terms of d:
(2)
Equation (2) represents the distance in a unit known as parsec (pc).
The parallax angle can be used to find out the distance by means of triangulation. Making a triangle between the nearby star, the Sun and the Earth (as is shown in the image below), knowing that the distance between the Earth and the Sun (150000000 Km), is defined as 1 astronomical unit (1AU).
For the case of (
):


Hence, it corresponds to a distance of 100 parsecs away from Earth.
<em>Summary:</em>
Notice how a small parallax angle means that the object is farther away.
Key terms:
Parsec: Parallax of arc second
Answer:
Explanation:
Let the charge particle have charge equal to +q .
force due to electric field will be along the field that is along y - axis . To balance it force by magnetic force must be along - y axis. ( negative of y axis )
force due to magnetic field = q ( v x B ) , v is velocity and B is magnetic field.
F = q ( v i x B k ) , ( velocity is along x direction and magnetic field is along z axis. )
= (Bqv) - j
= - Bqv j
The force will be along - ve y - direction .
If we take charge as negative or - q
force due to electric field will be along - y axis .
magnetic force = F = -q ( v i x B k )
= + Bqv j
magnetic force will be along + y axis
So it is difficult to find out the nature of charge on the particle from this experiment.
I believe your answer should be C. Speed.