Answer:
The acceleration of the proton is 2.823 x 10¹⁷ m/s²
The acceleration of the electron is 5.175 x 10²⁰ m/s²
Explanation:
Given;
distance between the electron and proton, r = 7 x 10⁻¹⁰ m
mass of proton,
= 1.67 x 10⁻²⁷ kg
mass of electron,
= 9.11 x 10⁻³¹ kg
The attractive force between the two charges is given by Coulomb's law;

where;
k is Coulomb's constant = 9 x 10⁹ Nm²/c²

Acceleration of proton is given by;
F = ma

Acceleration of the electron is given by;

Answer:
a)5.88J
b)-5.88J
c)0.78m
d)0.24m
Explanation:
a) W by the block on spring is given by
W=
kx² =
(530)(0.149)² = 5.88 J
b) Workdone by the spring = - Workdone by the block = -5.88J
c) Taking x = 0 at the contact point we have U top = U bottom
So, mg
=
kx² - mgx
And,
= (
kx² - mgx
)/(mg) =
]/(0.645x9.8)
= 0.78m
d) Now, if the initial initial height of block is 3
= 3 x 0.78 = 2.34m
then,
kx² - mgx - mg
=0
(530)x² - [(0.645)(9.8)x] - [(0.645)(9.8)(2.34) = 0
265x² - 6.321x - 14.8 = 0
a=265
b=-6.321
c=-14.8
By using quadratic eq. formula, we'll have the roots
x= 0.24 or x=-0.225
Considering only positive root:
x= 0.24m (maximum compression of the spring)
Answer:

Explanation:
Volume can be found by dividing the mass by the density.

The mass is 100 grams and density is 0.920 grams per cubic centimeters.
Therefore,

Substitute the values into the formula.

Divide. Note that the grams, or "g" will cancel each other out.

The volume of the ice cube is 108.697652 cubic centimeters.
To solve this problem we will apply the concepts related to the Doppler Effect, defined as the change in apparent frequency of a wave produced by the relative movement of the source with respect to its observer. Mathematically it can be written as

Here,
= Frequency of the source
= Speed of the sound
= Speed of source
Now the velocity we have that


Then replacing our values,


Therefore the frequency of the observer is 1047.86Hz