Answer:
a) Not Accurate
b) Not Accurate
c) Accurate
d) Accurate
Explanation:
Part a
Not Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m
Part b
Not Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m
Part c
Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m by varying the phase difference between two waves she can achieve the desired results.
Part d
Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m by varying the phase difference between two waves she can achieve the desired results.
Answer:
C.<u>ten</u><u> </u><u>times</u><u> </u><u>the</u><u> </u><u>intensity</u><u>.</u>
<u>Answer</u>
The combined displacement is 2km north
<u>Explanation</u>
Since displacement is a vector quantity, we take into account the direction.
Good for us all the displacement vectors are in the same dimension, so we can make north positive and south negative or vice-versa.
We now add to obtain,

This will simplify to

Therefore the combined displacement is 2km north
If the two waves have the SAME FREQUENCY and are exactly
out of phase (180° apart), then the resultant wave will have the
same frequency and an amplitude of 1 unit.
If the two waves do not have the SAME FREQUENCY, then their
relative phase is meaningless.
Answer:
increase
Explanation:
According to Einstein's photoelectric equation; the energy of a photon striking a metal surface is related to the kinetic energy of the ejected photoelectron by the formula;
KE= hf - hfo
Where h is the planks constant, f and fo refer to the frequency of incident photon and the threshold frequency respectively.
Hence, we can clearly see from the foregoing that the kinetic energy of the ejected photoelectron is proportional to the frequency of the incident photon.
Hence, if the frequency of the incident photon is increased, the kinetic energy of the ejected photoelectron increases also.