1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
raketka [301]
3 years ago
13

A tide of increased range that occurs during the new and full moons is called

Physics
1 answer:
irina [24]3 years ago
4 0
A tide of increased range that occurs during the new and full moons is called Spring Tide.
You might be interested in
Determine the potential difference between the ends of the wire of resistance 5 Ω if 720 C passes through it per minute.
Strike441 [17]

Answer:

The potential difference between the ends of a wire is 60 volts.

Explanation:

It is given that,

Resistance, R = 5 ohms

Charge, q = 720 C

Time, t = 1 min = 60 s

We know that the charge flowing per unit charge is called current in the circuit. It is given by :

I = 12 A

Let V is the potential difference between the ends of a wire. It can be calculated using Ohm's law as :

V = IR

V = 60 Volts

So, the potential difference between the ends of a wire is 60 volts. Hence, this is the required solution.

8 0
3 years ago
A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to
gizmo_the_mogwai [7]

Answer:

10s

Explanation:

Acceleration is a measure of a rate of change of velocity, or in other words, a measure of how quickly the velocity is changing.

If acceleration is constant, then the velocity is changing by a constant amount.

With an acceleration of 100 m/s^2, starting from the launching pad (and thus, an initial velocity of zero), we can calculate how long it will take to reach a final velocity of 1000m/s with the following formula:

v=at+v_o where "v" is the final velocity at some later time "t", "a" is the constant acceleration, and "v" sub-zero is the initial velocity.

v=at+v_o

(1000\text{ [m/s]})=(100 \text{ } [\text{m/s}^2] )t+(0\text{ [m/s]})

1000\text{ [m/s]}=100 \text{ } [\text{m/s}^2] *t

\dfrac{1000\text{ [m/s]}}{100 \text{ } [\text{m/s}^2]}=\dfrac{100 \text{ } [\text{m/s}^2] *t}{100 \text{ } [\text{m/s}^2]}

10\text{ [s]}=t

So, it will take 10 seconds for the rocket to reach 1000m/s when starting from the launching pad, with a constant velocity of 100m/s^2.

<u>Verification:</u>

In this situation, it is quick to verify that 10 seconds is correct by looking at what the velocities will be each second.

Recognizing that the acceleration is a=\dfrac{100 [\frac{m}{s}]}{1[s]}, the velocity increases by 100 units [m/s] every second.

At time 0[s], the velocity is 0[m/s]

At time 1[s], the velocity is 100[m/s]

At time 2[s], the velocity is 200[m/s]

At time 3[s], the velocity is 300[m/s]

At time 4[s], the velocity is 400[m/s]

At time 5[s], the velocity is 500[m/s]

At time 6[s], the velocity is 600[m/s]

At time 7[s], the velocity is 700[m/s]

At time 8[s], the velocity is 800[m/s]

At time 9[s], the velocity is 900[m/s]

At time 10[s], the velocity is 1000[m/s]

So, indeed, after 10 seconds, the velocity reaches 1000 m/s

5 0
2 years ago
I will mark you brainlist!
kirill115 [55]
Tornado- Trees knocked down, debris everywhere, ground and dirt scattered.
7 0
3 years ago
You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t
kati45 [8]

Answer:

The  coefficient of kinetic friction  \mu_k =  0.724

Explanation:

From the question we are told that

   The  length of the lane is  l =  36.0 \  m

    The speed of the truck is  v  =  22.6\  m/s

     

Generally from the work-energy theorem we have that  

    \Delta KE  =   N  *  \mu_k *  l

Here N  is the normal force acting on the truck which is mathematically represented as

     \Delta KE is the change in kinetic energy which is mathematically represented as

        \Delta KE =  \frac{1}{2} *  m *  v^2

=>     \Delta KE =  0.5  *  m *  22.6^2

=>      \Delta KE =  255.38m

        255.38m =    m *  9.8  *  \mu_k *   36.0

=>     255.38  =    352.8  *  \mu_k

=>   \mu_k =  0.724

 

6 0
3 years ago
Pressure __________ with depth to support the fluid weight above
eduard

Answer:Hydrostatic

Explanation: I think this is the answer, not sure. Sorry

5 0
3 years ago
Other questions:
  • How many moles of MgCl2 are there in 302 g of the compound?
    7·2 answers
  • The average marathon is 42 km long. If the average person can run the marathon with an average velocity of 2.57 m/s, how long wi
    13·1 answer
  • Heat likes to remain <br> ONMFRIU ← Whats that unscrambled?
    7·1 answer
  • UV radiaGon having a wavelength of 120 nm falls on gold metal, to which electrons are bound by 4.82 eV. What is the maximum kine
    12·1 answer
  • How do good and bad ozone forms
    12·2 answers
  • A brand of earplugs reduces the sound intensity level by 27 dB.By what factor do these earplugs reduce the acoustic intensity?
    9·1 answer
  • You've been called in to investigate a construction accidentin
    15·1 answer
  • Why does the density of a substance remain the same for different amounts of the substance
    11·1 answer
  • Helppppp!!!!!! inportant need help with b​
    12·1 answer
  • What is the acceleration of a proton moving with a speed of 6.5 m/s at right angles to a magnetic field of 1.4 T?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!