1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vadim26 [7]
2 years ago
6

A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to

reach the final velocity of 1,000 meters/second.
Physics
1 answer:
gizmo_the_mogwai [7]2 years ago
5 0

Answer:

10s

Explanation:

Acceleration is a measure of a rate of change of velocity, or in other words, a measure of how quickly the velocity is changing.

If acceleration is constant, then the velocity is changing by a constant amount.

With an acceleration of 100 m/s^2, starting from the launching pad (and thus, an initial velocity of zero), we can calculate how long it will take to reach a final velocity of 1000m/s with the following formula:

v=at+v_o where "v" is the final velocity at some later time "t", "a" is the constant acceleration, and "v" sub-zero is the initial velocity.

v=at+v_o

(1000\text{ [m/s]})=(100 \text{ } [\text{m/s}^2] )t+(0\text{ [m/s]})

1000\text{ [m/s]}=100 \text{ } [\text{m/s}^2] *t

\dfrac{1000\text{ [m/s]}}{100 \text{ } [\text{m/s}^2]}=\dfrac{100 \text{ } [\text{m/s}^2] *t}{100 \text{ } [\text{m/s}^2]}

10\text{ [s]}=t

So, it will take 10 seconds for the rocket to reach 1000m/s when starting from the launching pad, with a constant velocity of 100m/s^2.

<u>Verification:</u>

In this situation, it is quick to verify that 10 seconds is correct by looking at what the velocities will be each second.

Recognizing that the acceleration is a=\dfrac{100 [\frac{m}{s}]}{1[s]}, the velocity increases by 100 units [m/s] every second.

At time 0[s], the velocity is 0[m/s]

At time 1[s], the velocity is 100[m/s]

At time 2[s], the velocity is 200[m/s]

At time 3[s], the velocity is 300[m/s]

At time 4[s], the velocity is 400[m/s]

At time 5[s], the velocity is 500[m/s]

At time 6[s], the velocity is 600[m/s]

At time 7[s], the velocity is 700[m/s]

At time 8[s], the velocity is 800[m/s]

At time 9[s], the velocity is 900[m/s]

At time 10[s], the velocity is 1000[m/s]

So, indeed, after 10 seconds, the velocity reaches 1000 m/s

You might be interested in
Sample Response: When there is less rainfall, land, which is part of the geosphere, becomes dry. When there is not enough water,
GalinKa [24]

grow alot of plants that's help to make more h2o

8 0
2 years ago
How many photons will be required to raise the temperature of 1.8 g of water by 2.5 k ?'?
tatyana61 [14]
Missing part in the text of the problem: 
"<span>Water is exposed to infrared radiation of wavelength 3.0×10^−6 m"</span>

First we can calculate the amount of energy needed to raise the temperature of the water, which is given by
Q=m C_s \Delta T
where
m=1.8 g is the mass of the water
C_s = 4.18 J/(g K) is the specific heat capacity of the water
\Delta T=2.5 K is the increase in temperature.

Substituting the data, we find
Q=(1.8 g)(4.18 J/(gK))(2.5 K)=18.8 J=E

We know that each photon carries an energy of
E_1 = hf
where h is the Planck constant and f the frequency of the photon. Using the wavelength, we can find the photon frequency:
\lambda =  \frac{c}{f}= \frac{3 \cdot 10^8 m/s}{3 \cdot 10^{-6} m}=1 \cdot 10^{14}Hz

So, the energy of a single photon of this frequency is
E_1 = hf =(6.6 \cdot 10^{-34} J)(1 \cdot 10^{14} Hz)=6.6 \cdot 10^{-20} J

and the number of photons needed is the total energy needed divided by the energy of a single photon:
N= \frac{E}{E_1}= \frac{18.8 J}{6.6 \cdot 10^{-20} J} =2.84 \cdot 10^{20} photons
4 0
3 years ago
Imagine you derive the following expression by analyzing the physics of a particular system: v2=v20+2ax. The problem requires so
lisabon 2012 [21]

As per kinematics equation we are given that

v^2 = v_o^2 + 2ax

now we are given that

a = 2.55 m/s^2

v_0 = 21.8 m/s

v = 0

now we need to find x

from above equation we have

0^2 = 21.8^2 + 2(2.55)x

0 = 475.24 + 5.1 x

x = 93.2 m

so it will cover a distance of 93.2 m

7 0
3 years ago
Read 2 more answers
An airplane is moving at 350 km/hr. If a bomb is
Molodets [167]

Answers:

a) -171.402 m/s

b) 17.49 s

c) 1700.99 m

Explanation:

We can solve this problem with the following equations:

y=y_{o}+V_{oy}t-\frac{1}{2}gt^{2} (1)

x=V_{ox}t (2)

V_{f}=V_{oy}-gt (3)

Where:

y=0 m is the bomb's final jeight

y_{o}=1.5 km \frac{1000 m}{1 km}=1500 m is the bomb'e initial height

V_{oy}=0 m/s is the bomb's initial vertical velocity, since the airplane was moving horizontally

t is the time

g=9.8 m/s^{2} is the acceleration due gravity

x is the bomb's range

V_{ox}=350 \frac{km}{h} \frac{1000 m}{1 km} \frac{1 h}{3600 s}=97.22 m/s is the bomb's initial horizontal velocity

V_{f} is the bomb's fina velocity

Knowing this, let's begin with the answers:

<h3>b) Time</h3>

With the conditions given above, equation (1) is now written as:

y_{o}=\frac{1}{2}gt^{2} (4)

Isolating t:

t=\sqrt{\frac{2 y_{o}}{g}} (5)

t=\sqrt{\frac{2 (1500 m)}{9.8 m/s^{2}}} (6)

t=17.49 s (7)

<h3>a) Final velocity</h3>

Since V_{oy}=0 m/s, equation (3) is written as:

V_{f}=-gt (8)

V_{f}=-(97.22)(17.49 s) (9)

V_{f}=-171.402 m/s (10) The negative sign ony indicates the direction is downwards

<h3>c) Range</h3>

Substituting (7) in (2):

x=(97.22 m/s)(17.49 s) (11)

x=1700.99 m (12)

5 0
3 years ago
A car traveled at an average speed of 60 MPhil for two hours how far did it travel
masha68 [24]
<span>120 miles is the answer

</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • PLEASE HELP!!!!
    10·1 answer
  • The element in a fluorescent lightbulb that absorbs UV light and releases visible light energy is ____?
    9·2 answers
  • a motorcycle starting from rest has an acceleration of 2.6m/s how long does it take the motorcycle to travel a distance of 120
    6·1 answer
  • A bicyclist travels 60.0 kilometers in 3.5 hours. What's the cyclists average speed?
    14·2 answers
  • What is the speed of light m/s
    14·2 answers
  • A ball is thrown upward. At a height of 10 meters above the ground, the ball has a potential energy of 50 joules (with the poten
    12·1 answer
  • 100 POINTS. PLEASE EXPLAIN
    12·2 answers
  • Shearing of the wool is done with special instruments called_____​
    5·2 answers
  • Sally and Suzy are moving into their first college dorm together. They are loading all their furniture onto a truck with a ramp
    13·1 answer
  • A block with a mass of 33.0 kg is pushed with a horizontal force of 150 N. The block moves at a constant speed across a level, r
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!