1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vadim26 [7]
2 years ago
6

A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to

reach the final velocity of 1,000 meters/second.
Physics
1 answer:
gizmo_the_mogwai [7]2 years ago
5 0

Answer:

10s

Explanation:

Acceleration is a measure of a rate of change of velocity, or in other words, a measure of how quickly the velocity is changing.

If acceleration is constant, then the velocity is changing by a constant amount.

With an acceleration of 100 m/s^2, starting from the launching pad (and thus, an initial velocity of zero), we can calculate how long it will take to reach a final velocity of 1000m/s with the following formula:

v=at+v_o where "v" is the final velocity at some later time "t", "a" is the constant acceleration, and "v" sub-zero is the initial velocity.

v=at+v_o

(1000\text{ [m/s]})=(100 \text{ } [\text{m/s}^2] )t+(0\text{ [m/s]})

1000\text{ [m/s]}=100 \text{ } [\text{m/s}^2] *t

\dfrac{1000\text{ [m/s]}}{100 \text{ } [\text{m/s}^2]}=\dfrac{100 \text{ } [\text{m/s}^2] *t}{100 \text{ } [\text{m/s}^2]}

10\text{ [s]}=t

So, it will take 10 seconds for the rocket to reach 1000m/s when starting from the launching pad, with a constant velocity of 100m/s^2.

<u>Verification:</u>

In this situation, it is quick to verify that 10 seconds is correct by looking at what the velocities will be each second.

Recognizing that the acceleration is a=\dfrac{100 [\frac{m}{s}]}{1[s]}, the velocity increases by 100 units [m/s] every second.

At time 0[s], the velocity is 0[m/s]

At time 1[s], the velocity is 100[m/s]

At time 2[s], the velocity is 200[m/s]

At time 3[s], the velocity is 300[m/s]

At time 4[s], the velocity is 400[m/s]

At time 5[s], the velocity is 500[m/s]

At time 6[s], the velocity is 600[m/s]

At time 7[s], the velocity is 700[m/s]

At time 8[s], the velocity is 800[m/s]

At time 9[s], the velocity is 900[m/s]

At time 10[s], the velocity is 1000[m/s]

So, indeed, after 10 seconds, the velocity reaches 1000 m/s

You might be interested in
Which of the following is a subsurface event takes place during the rock cycle
alukav5142 [94]

Answer:

The answer is A. Cementing...

Explanation:

hope this helps

4 0
3 years ago
Read 2 more answers
How does the force of gravity affect the rate of acceleration?
Vesnalui [34]
Gravity lets all objects fall to the ground at the same speed, 9.8 m/s/s. If the force of gravity were stronger, such as 10 m/s/s, the rate of acceleration would be faster.
3 0
3 years ago
A rescue plane flying horizontally at 72.6 m / s spots a survivor in the ocean 182 m directly below and releases an emergency ki
Mila [183]

Answer:

547 m

Explanation:

From law of motion

s = ut + ½at²

Where "t" is Time taken to reach Earth

s= distance= 182 m

a= vertical acceleration = 5.82 m / s 2

U= initial velocity in vertical position = 0

182= ½ × 5.82t²

t²=( 2× 182)/ 5.82

= 364/5.82

= 62.54

t= √62.54

t= 7.908s

horizontal distance travelled = speed x time

Horizontal speed= 72.6 m / s

horizontal distance travelled =72.6× 7.908

= 547 m

Hence, the survivor will it hit the waves at 547 m away

3 0
2 years ago
What is the volume of this bubble when it reaches the surface?
steposvetlana [31]

Answer:

Volume will be 15 mL. Solution:- If we look at the given information then it is Boyle's law as the temperature is constant and the volume changes inversely as the pressure changes. So, the volume of the air bubble at the surface will be 15 mL.

8 0
3 years ago
A toy doll and a toy robot are standing on a frictionless surface facing each other. The doll has a mass of 0.2 kg, and the robo
Natali5045456 [20]

Answer:

<h3>1.43m/s²</h3>

Explanation:

According to newtons second law.

F = mass * acceleration

If the doll has a mass of 0.2 kg, and the robot has a mass of 0.5 kg, the resulting mass will be 0.7kg

Force applied = 1N

acceleration = Force/mass

Substitute the values and get acceleration

acceleration = 1/0.7

acceleration = 1.43m/s²

Hence the magnitude of the acceleration of the robot is 1.43m/s²

3 0
3 years ago
Other questions:
  • Why is it important to practice a presentation?
    7·2 answers
  • A non-conducting sphere of radius R = 3.0 cm carries a charge Q = 2.0 mC distributed uniformly throughout its volume. At what di
    8·1 answer
  • A car is traveling at 42.0 km/h on a flat highway. (a) If the coefficient of friction between road and tires on a rainy day is 0
    11·1 answer
  • In triangle​ ABC, the angles A and B have the same​ measure, while the measure of angle C is 21degrees larger than the measure o
    15·1 answer
  • In which situation is the acceleration of the car negative?
    14·2 answers
  • SOHCAHTOA MATH REVIEW <br><br> Find the angle x from the diagram above
    9·1 answer
  • Help me with this question please
    6·2 answers
  • Resisting force is
    10·1 answer
  • 1. Faça as transformações:
    5·1 answer
  • What are the four most important characteristics of an electric circuit?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!