The correct option is out of the screen.
As the motion of positive charge is the direction of current in the wire. From the right-hand curl rule, the magnetic field direction will be outside the paper or the screen. As the <span>wire runs left to right and carries a current in the direction from left to right, the magnetic field lines will be outside the screen.</span>
Answer: A. Transverse
Explanation:
Sound is a mechanical transverse wave, it travels faster in solids than in liquids or gases. This is because the speed of the mechanical waves is determined by a relationship between the elastic properties of the medium in which they are propagated and the mass per unit volume of the medium.
In addition, the speed of sound varies with changes in the temperature of the medium. This is because an increase in temperature means that the frequency of interactions between the particles that transport the vibration increases, hence this increase in activity increases the speed.
Hence:
<h3>Sounds travels in a <u>transverse</u> wave</h3>
Answer:
The answer is a 4.2m
Explanation:
Given data
Please see attached the rough drawing for your reference.
From the drawing, you ran 18m west and 2.4m south
The displacement is
= 1.8+2.4
=4.2m
We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:

Where

differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question,

is the distance between both rays.


At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:

For red we have:

We finally have:
<h2>Hey there!</h2>
The Force "F" applied on the unit electric charge "q" at a point describes the electric field.
<h3>☆ Formula to find electric charge:</h3>
<h2>Hope it helps </h2>