The ball's vertical velocity at the time it just passes over the goal is 0 m/s. Its initial vertical velocity is unknown and we denote it by
, where
here is the ball's initial speed. Vertically, the only force acting on the ball is gravity, which attributes a downward acceleration of 9.8 m/s^2. We expect the maximum height achieved by the ball to be 2.4 m, so we can find the initial speed by solving


Answer:
Explanation:
30 N force is pulling total mass of 15 kg , so acceleration in the system of masses
= 30 / 15
= 2 m / s²
Let us now consider forces acting on 9 kg . 30 N is pulling it in forward direction . Tension T in the string attached to it is pulling it in reverse direction
so net force on it
30 - T
Applying Newton's law of motion on it
30 - T = mass x acceleration
30 - T = 9 x 2
30 - 18 = T
T = 12 N
Answer:
Explained below:
Explanation:
When a cold air mass meets a warm air mass, a front is formed and if the cold air is replacing the warm air, it is known as a cold front. Cold fronts frequently cause thunderstorms or rain showers because they pressure the air in a steep upward direction at the front's edge. They are also responsible to bring the changes in atmospheric pressure and wind direction.
Answer:
9.66 x 10^-6 m
Explanation:
Use the Wein's displacement law

Where, b is the Wein's constant
b = 2.898 x 10^-3 meter-kelvin
So, λm x 300 = 2.898 x 10^-3
λm = 9.66 x 10^-6 m
Answer:
80 ft/s
Explanation:
Given:
Δy = 100 ft
v₀ = 0 ft/s
a = 32.2 ft/s²
Find: v
v² = v₀² + 2aΔx
v² = (0 ft/s)² + 2 (32.2 ft/s²) (100 ft)
v = 80.2 ft/s
Rounded, the speed when it reaches the ground is 80 ft/s.