Explanation:
1) Radar uses radio waves, which are a type of electromagnetic energy. Sonar uses the echo principle by sending out sound waves underwater or through the human body to locate objects. Sound waves are a type of acoustic energy. Because of the different type of energy used in radar and sonar, each has its own applications.
2)Radar systems operate using radio waves primarily in air, while sonar systems operate using sound waves primarily in water (Minkoff, 1991). Despite the difference in medium, similarities in the principles of radar and sonar can frequently result in technological convergence.
The correct answer to your question here is D
The missing diagram is in the attachments.
Answer: X: positive Y: positive
Explanation: Electric field is a vector quantity, which means it can be represented by a vector arrow: the arrow points in the direction of electric field and its length represents the magnitude at a given location. There are another representation of the electric field called electric field lines, <u>in which the line points away from a positively charged source and towards a negatively charged source</u>. This occurs because it follows a pattern, where the lines points in the direction that a positive test charge would have if it is accelerating on the line.
Analyzing the diagram, it can be observed that the lines are pointing away from both of the charged objects. Therefore, both X and Y are <u>positively charged</u>.
W = mg = 350 newton
m = W/g = 350/9.8 = 35.71 kg
on mars
W = mg = 134 newton
g = W/m = 134/35.71 = 3.75 meters/second2
I notice that even though we're working with frames of reference
here, you never said which frame the '5 km/hr' is measured in.
In fact ! You didn't even say which frame the '12 km/hr' of his
bike is measured in.
So there are several different ways this could go. I'll do it the way
I THINK you meant it, but that doesn't guarantee anything.
-- Simon is riding his bike at 12 km/hr relative to the sidewalk,
away from Keesha.
-- He throws a ball at Keesha, at 5 km/hr relative to his own face.
-- Keesha sees the ball approaching her at (12 - 5) = 7 km/hr
relative to the ground and to her.