Answer:
It will be A. So since its 2 times more the kinetic energy. But then you have to square it 2^2 = 4
There is no definite end to earths atmosphere, but technically the border between the outer space and earth gets thinner as you move up from the earths surface. The Karman line is the closest definition there is which describes the end of the earth's atmosphere, it is 100 km above earth's sea level at approximately 1.56 % of total earth's radius. This describes the boundary between the outer space and the atmosphere.
Answer:
It always acurs after a 1st quarter
do you have photo?
Explanation:
Answer:
1/2
Explanation:
The energy stored in a capacitor is given by

where
C is the capacitance
V is the potential difference
Calling
the capacitance of capacitor 1 and
its potential difference, the energy stored in capacitor 1 is

For capacitor 2, we have:
- The capacitance is half that of capacitor 1: 
- The voltage is twice the voltage of capacitor 1: 
so the energy stored in capacitor 2 is

So the ratio between the two energies is

To solve the problem it is necessary to apply conservation of the moment and conservation of energy.
By conservation of the moment we know that

Where
M=Heavier mass
V = Velocity of heavier mass
m = lighter mass
v = velocity of lighter mass
That equation in function of the velocity of heavier mass is

Also we have that 
On the other hand we have from law of conservation of energy that

Where,
W_f = Work made by friction
KE = Kinetic Force
Applying this equation in heavier object.






Here we can apply the law of conservation of energy for light mass, then

Replacing the value of 

Deleting constants,

