Answer:
Kc = 9.52.
Explanation:
<em>A + 2B ⇌ C,</em>
Kc = [C]/[A][B]²,
Concentration: [A] [B] [C]
At start: 0.3 M 1.05 M 0.55 M
At equilibrium: 0.3 - x 1.05 - 2x 0.55 + x
0.14 M 1.05 - 2x 0.71 M
- For the concentration of [A]:
∵ 0.3 M - x = 0.14 M.
∴ x = 0.3 M - 0.14 M = 0.16 M.
∴ [B] at equilibrium = 1.05 - 2x = 1.05 M -2(0.16) = 0.73 M.
<em>∵ Kc = [C]/[A][B]²</em>
∴ Kc = (0.71)/(0.14)(0.73)² = 9.5166 ≅ 9.52.
Answer:
5.01 atm
Explanation:
To answer this question, we're going to <u>use the PV=nRT equation</u>, where in this case:
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 25 °C ⇒ 25 + 273.16 = 298.16 K
We <u>input the data</u>:
- P * 12.2 L = 2.5 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
And finally <u>solve for P</u>:
Answer:
4 sig figs: 20.18
Explanation:
the smallest amount of digits was 4 in the expression
Radioactive decay => C = Co { e ^ (- kt) |
Data:
Co = 2.00 mg
C = 0.25 mg
t = 4 hr 39 min
Time conversion: 4 hr 39 min = 4.65 hr
1) Replace the data in the equation to find k
C = Co { e ^ (-kt) } => C / Co = e ^ (-kt) => -kt = ln { C / Co} => kt = ln {Co / C}
=> k = ln {Co / C} / t = ln {2.00mg / 0.25mg} / 4.65 hr = 0.44719
2) Use C / Co = 1/2 to find the hallf-life
C / Co = e ^ (-kt) => -kt = ln (C / Co)
=> -kt = ln (1/2) => kt = ln(2) => t = ln (2) / k
t = ln(2) / 0.44719 = 1.55 hr.
Answer: 1.55 hr