Answer:
52.5 mol O2
Explanation:
4 FeCl3 + 6 O2 -> 2 Fe2O3 +6 Cl2
4 mol FeCl3 -> 6 mol O2
35.0 mol FeCl3 -> x
x= (35.0 mol FeCl3 * 6 mol O2)/4 mol FeCl3
x=52.5 mol O2
To make sure no cracks are in the crucible and also to remove any moisture present in the crucible by the process of heating.
Answer: The correct answer is option B.
Explanation: Reactivity of elements is defined as the tendency to loose or gain electrons.
These reactions are a type of single displacement reactions. A single displacement reaction is a type of reaction in which an element displaces another element in a chemical reaction. These are studied with the help of reactivity series.
The element which lies above in the reactivity series can easily displace the element which lies below in the reactivity series.
Option A: This reaction will not yield a stable product because Zinc lies below Aluminium in the reactivity series.

Option B: This reaction will yield a stable product because Sodium lies above Calcium in the reactivity series.

Option C: This reaction will not yield a stable product because Hydrogen lies below Magnesium in the reactivity series.

Option D: This reaction will not yield a stable product because Calcium lies below Barium in the reactivity series.

Option E: This reaction will not yield a stable product because barium lies below Lithium in the reactivity series.

Glaciers capture large amount of carbon dioxide from atmosphere. When concentration of carbon dioxide molecules in glaciers increase, then strength and fracture toughness of ice are decreased and <span>that make glaciers vulnerable to cracking and splitting into fragments.
</span>That is because hydrogen bonds between water molecules in glaciers is decreased under increasing concentrations of carbon dioxide who <span>competes with the water molecules connected in the ice crystal.</span>
Assume you have 1 L of the material (you can assume any volume you want, you'll get the same answer).
<span>Using the density, the one L has a mass of 1114 g </span>
<span>20% by mass of phosphoric acid means the mass of phosphoric acid is 0.20 * 1114 g </span>
<span>Calculate the moles of phosphoric acid </span>
<span>Molarity, M, mole / L = moles of acid / volume or 1 L</span>