Answer:
0.000234 seconds
Explanation:
Since the row is 0.15m, its radius of rotation must be 0.15 / 2 = 0.075 m
We can start by calculating the angular speed of the rod:
Since one revolution equals to 2π rad. The speed in revolution per second must be
26800 / 2π = 4265 revolution/s
The number of seconds per revolution, or period, is the inverse:
1/4265 = 0.000234 seconds
Answer:
2.5 s, 5 m
Explanation:
The equations for the horizontal and vertical position of Lukalu are:

we can find the time it takes her to reach the ground by requiring that the vertical position becomes zero:
y(t) = 0
So we find:

The horizontal distance of Lukalu instead will be given by the equation for the horizontal position, substituting t = 2.5 s:

Answer:
68.585m/sec , 779.1 N
Explanation:
To feel weightless, centripetal acceleration must equal g (9.8m/sec^2). The accelerations then cancel.
From centripetal motion.
F =( mv^2)/2
But since we are dealing with weightlessness
r = 480m
g = 9.8m/s^2
M also cancels, so forget M.
V^2 = Fr
V = √ Fr
V =√ (9.8 x 480) = 4704
= 68.585m/sec.
b) Centripetal acceleration = (v^2/2r) = (68.585^2/960) = 4704/960
= 4.9m/sec^2.
Weight (force) = (mass x acceleration) = 159kg x (g - 4.9)
159kg × ( 9.8-4.9)
159kg × 4.9
= 779.1N
Answer:
A coefficient friction is a value that shows the relationship between two objects and the normal reaction between the objects that are involved.
Explanation: