1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeTakaya
3 years ago
11

A policeman in a stationary car measures the speed of approaching cars by means of an ultrasonic device that emits a sound with

a frequency of 41.2 khz. A car is approaching him at a speed of 33.0 m/s. The wave is reflected by the car and interferes with the emitted sound producing beats. What is the frequency of the beats? The speed of sound in air is 330 m/s.

Physics
2 answers:
beks73 [17]3 years ago
6 0

Answer:

4.6 kHz

Explanation:

The formula for the Doppler effect allows us to find the frequency of the reflected wave:

f'=(\frac{v}{v-v_s})f

where

f is the original frequency of the sound

v is the speed of sound

vs is the speed of the wave source

In this problem, we have

f = 41.2 kHz

v = 330 m/s

vs = 33.0 m/s

Therefore, if we substitute in the equation we find the frequency of the reflected wave:

f'=(\frac{330 m/s}{330 m/s-33.0 m/s})(41.2 kHz)=45.8 kHz

And the frequency of the beats is equal to the difference between the frequency of the reflected wave and the original frequency:

f_B = |f'-f|=|45.8 kHz-41.2 kHz|=4.6 kHz

lara [203]3 years ago
6 0

The frequency of the beats is about 9.2 kHz

\texttt{ }

<h3>Further explanation</h3>

Let's recall the Doppler Effect formula as follows:

\large {\boxed {f' = \frac{v + v_o}{v - v_s} f}}

<em>f' = observed frequency</em>

<em>f = actual frequency</em>

<em>v = speed of sound waves</em>

<em>v_o = velocity of the observer</em>

<em>v_s = velocity of the source</em>

<em>Let's tackle the problem!</em>

\texttt{ }

<u>Given:</u>

actual frequency = f = 41.2 kHz

velocity of the car = v_c = 33.0 m/s

speed of sound in air = v = 330 m/s

<u>Asked:</u>

frequency of the beats = Δf = ?

<u>Solution:</u>

<em>Firstly , we will use the formula of </em><em>Doppler Effect</em><em> as follows:</em>

f' = \frac{v + v_c}{v - v_c} \times f

f' = \frac{330 + 33}{330 - 33} \times 41.2

f' = \frac{363}{297} \times 41.2

f' = \frac{11}{9} \times 41.2

f' = 50 \frac{16}{45} \texttt{ kHz}

f' \approx 50.4 \texttt{ kHz}

\texttt{ }

<em>Next , we could calculate the frequency of the beats as follows:</em>

\Delta f = f' - f

\Delta f \approx 50.4 - 41.2

\Delta f \approx 9.2 \texttt{ kHz}

\texttt{ }

<h3>Conclusion:</h3>

The frequency of the beats is about 9.2 kHz

\texttt{ }

<h3>Learn more</h3>
  • Doppler Effect : brainly.com/question/3841958
  • Example of Doppler Effect : brainly.com/question/810552

\texttt{ }

<h3>Answer details</h3>

Grade: College

Subject: Physics

Chapter: Sound Waves

\texttt{ }

Keywords: Sound, Wave , Wavelength , Doppler , Effect , Policeman , Stationary , Frequency , Speed , Beats

You might be interested in
What is the only possible value of ml for an electron in an s orbital?
Archy [21]

Answer:

  • zero

Explanation:

m_l     is the magnetic quantum number.

The only possible value for the magnetic quantum number for an electron in an s orbital is 0.

The first three quantun numbers are:

  • n: principal quantum number. It may have positive integer values: 1, 2, 3, 4,5, 6, 7, ...

  • l : Azimuthal or angular momentum quantum number. It may have integer values from 0 to n - 1.

       This quantum number is related to the type (or shape) of the orbital:

        For s orbitals l=0

        For p orbitals l=1

        For d orbitals l=2

         For f orbitals l=3

In this case, it is an s orbital, so we have l=0.

  • m_l , the third quantum number can have integer values  {from-l}   to    {+l}

       Since, for the s orbitals  l=0 , the only possible value for {m_l} is zero.

4 0
3 years ago
Human reaction times are worsened by alcohol. How much further (in feet) would a drunk driver's car travel before he hits the br
sweet-ann [11.9K]

Answer:

A drunk driver's car travel 49.13 ft further than a sober driver's car, before it hits the brakes

Explanation:

Distance covered by the car after application of brakes, until it stops can be found by using 3rd equation of motion:

2as = Vf² - Vi²

s = (Vf² - Vi²)/2a

where,  

Vf = Final Velocity of Car = 0 mi/h

Vi = Initial Velocity of Car = 50 mi/h

a = deceleration of car  

s = distance covered

Vf, Vi and a for both drivers is same as per the question. Therefore, distance covered by both car after application of brakes will also be same.

So, the difference in distance covered occurs before application of brakes during response time. Since, the car is in uniform speed before applying brakes. Therefore, following equation shall be used:

s = vt

FOR SOBER DRIVER:

v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s

t = 0.33 s

s = s₁

Therefore,

s₁ = (73.33 ft/s)(0.33 s)

s₁ = 24.2 ft

FOR DRUNK DRIVER:

v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s

t = 1 s

s = s₂

Therefore,

s₂ = (73.33 ft/s)(1 s)

s₂ = 73.33 ft

Now, the distance traveled by drunk driver's car further than sober driver's car is given by:

ΔS = s₂ - s₁

ΔS = 73.33 ft - 24.2 ft

<u>ΔS = 49.13 ft</u>

6 0
3 years ago
Each blade of a fan has a radius of 11 inches. If the fan’s rate of turn is 1440o /sec, find the following. (a) The angular spee
notka56 [123]

Answer:

a) 24.43 radians per second

b) 268.73 inches per second

Explanation:

a) The angular speed of the fan on Celsius degrees/second is 1400, so we should convert that value to radians using the fact that 2π rad = 360 °C:

\omega = 1400\frac{C}{s}=1400\frac{C}{s}*\frac{2\pi\,rad}{360\,C}

\omega = 1400\frac{C}{s}=24.43\frac{rad}{s}

b) Linear speed on a point of the blade is related with angular speed of the fan by the equation

v=\omega r

with v linear speed, ω angular speed and r the radius of the blades. So:

v=(24.43\frac{rad}{s})(11 in)

Radians isn't really a unity; it is dimensionless so we can put it or not. So:

v=268.73\frac{in}{s}

3 0
3 years ago
State three differences between solid friction and viscosity​
Mrrafil [7]
Difference between solid friction and viscosity is as follows: Viscosity is proportional to the surface area whereas solid friction is independent of area of solid surfaces in contact. Viscous force on the body depends upon its velocity in the viscous media. But, friction does not depend on the velocity of the body.
8 0
3 years ago
Your answer should be precise to 0.1 m/s. Use a gravitational acceleration of 10 m/s/s. At it lowest point, a pendulum is moving
saw5 [17]

Explanation:

It is given that,

Speed, v₁ = 7.7 m/s

We need to find the velocity after it has risen 1 meter above the lowest point. Let it is given by v₂. Using the conservation of energy as :

\dfrac{1}{2}mv_1^2=\dfrac{1}{2}mv_2^2+mgh

v_2^2=v_1^2-2gh

v_2^2=(7.7)^2-2\times 10\times 1

v_2=6.26\ m/s

So, the velocity after it has risen 1 meter above the lowest point is 6.26 m/s. Hence, this is the required solution.

4 0
3 years ago
Read 2 more answers
Other questions:
  • When I hurricane nearest land what causes the most damage
    6·2 answers
  • What is the term for the pattern of spiral impressions inside a handgun?
    6·2 answers
  • A cylindrical bar of steel 10.1 mm (0.3976 in.) in diameter is to be deformed elastically by application of a force along the ba
    7·1 answer
  • A man can throw a ball a maximum horizontal distance of 56.1523 m. The acceleration of gravity is 9.8 m/s 2 . How far can he thr
    8·1 answer
  • A light plane is headed due south with a speed of 200 km/h relative to still air. After 1.00 hour, the pilot notices that they h
    7·1 answer
  • Do substances that heat up quickly have high or low specific heat capacity?
    5·1 answer
  • Describe what an electromagnet
    8·2 answers
  • The chilled water system for a 27-story building has a pump located at ground level. The lost head in a vertical riser from the
    13·1 answer
  • I.Name two commonly used thermometric liquids.
    8·2 answers
  • The diagram shows organisms a diver observed during an ocean dive.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!