Here is the energy that is left after the quantity of energy is transformed: 750 j of electrical energy is changed into 400 j of kinetic or mechanical energy, which is then turned into 0.32 j of efficient energy.
To run the fan, electrical energy is utilized.
Here, under the specified circumstances, 750 J of electrical energy is utilized to operate the fan, which is transformed into 400 J of kinetic energy. As a result, 350 J of energy is wasted due to various frictional and resistive losses.
Therefore, we may conclude that only 400 J of the 750 J available energy is used to power the fan, with the remaining energy being wasted as a result of friction.
Additionally, we can state that this fan's effectiveness will be
n = Useful ÷ Total
n = 400 ÷ 750
n = 8 ÷ 25
n = 0.32
Learn more about energy at
brainly.com/question/15915007?referrer=searchResults
#SPJ4
Average Velocity = Total Displacement / Total time
1st part of journey, 350 km at velocity 125 km/h
Time = 350 / 125 = 2.8 hours.
2nd part of journey, 220 km at velocity 115 km/h
Time = 220 / 115 = 1.9 hours
Average Velocity = Total Displacement / Total time
= (350 + 220) / (2.8 + 1.9)
= 570 / 4.7 ≈ 121.3 km/hr
Average Velocity ≈ 121 km/hr due south.
Option C.
Answer:
from
force =mass x acceleration
mass = force/acceleration
m = f/a
m = 7.5/15
m=0.5kg
Answer:
System D --> System C --> System A --> System B
Explanation:
The gravitational force between two masses m1, m2 separated by a distance r is given by:

where G is the gravitational constant. Let's apply this formula to each case now to calculate the relative force for each system:
System A has masses m and m separated by a distance r:

system B has masses m and 2m separated by a distance 2r:

system C has masses 2m and 3m separated by a distance 2r:

system D has masses 4m and 5m separated by a distance 3r:

Now, by looking at the 4 different forces, we can rank them from the greatest to the smallest force, and we find:
System D --> System C --> System A --> System B
Answer:
19.6m/s
Explanation:
A Rock falling off a cliff can be modeled as an object starting with zero velocity moves with constant acceleration for certain period of time, for such motion following equation of motion can be used.
here in our case
because object starts off from rest and
is acceleration because of gravity ( Motion under gravity).
and of course t = 2 second.
Now by substituting all this information in equation of motion we get.

that would be the velocity of rock as it would hit the ground.
Note! We have assumed that there is no air resistance.
A rock falling off a cliff can be modeled as an object starting with zero velocity moves with constant acceleration for a certain period of time, for such motion following equation of motion can be used.
here in our case because object starts off from rest and is acceleration because of gravity ( Motion under gravity).
and of course t = 2 seconds.
Now by substituting all this information in equation of motion we get.
V = 19.6m/s
that would be the velocity of rock as it would hit the ground.
Note! We have assumed that there is no air resistance.