Answer: 0.56 m/s
Explanation:
hello, there is 25° inclination angle for the chute in the drawing. Thankfully, I know this problem. The conservation of momentum.
so there are X and Y components for the momentum in this problem. The Y component is not conserved as when the coal gets in the cart, the normal force exerted by the surface reduces it to 0.
Now, the X component is definitely conserved here.
so you have the momentum of the cart which is 440*0.5 added to the momentum of the chunk which is 150*0.8*cos(25°), that is the momentum before the coupling between the objects. Afterwards both objects will have the same velocity, so we write the equation like this:

Answer:
The answer to your question is KNO₃
Explanation:
Data
HNO₃
KOH
neutralization reaction
Process
1.- In a neutralization reaction an acid reacts with an alkali and the products are water and a binary or ternary salt.
Reactants acid = HNO₃ alkali = KOH
A neutralization reaction is a double displacement reaction so the salt formed is.
HNO₃ + KOH ⇒ H₂O + KNO₃
Potassium nitrate
Forward because things that are in motion stay in motion.
Hope that helped!
~Izzy
Answer:
Force's magnitude
Direction: down (towards the center of the Earth)
Explanation:
Recall that the magnetic force on a conductor of length L carrying a current I in a magnetic field B is given by the equation:
in the case the magnetic field B and the direction of the current are at 90 degrees from each other (which is our case). The direction of the force will be given by the "right hand rule" associated with the vector product that defines this force.
Since the current is moving East, and the magnetic field of the Earth goes from North to South, the resultant Force vector will be pointing towards the Earth (and perpendicular to the plane defined by the current's direction and the magnetic field B)
The magnitude of the force, is given by the formula above, and given that all quantities to be considered are is SI units, it will result in Newtons (N):

Answer:
In free fall, mass is not relevant and there's no air resistance, so the acceleration the object is experimenting will be equal to the gravity exerted. If the object is falling on our planet, the value of gravity is approximately 9.81ms2 .