Answer:
0.13 g
Explanation:
mass of aluminum required = ( Dislocation length) / ( Dislocation density) × (density of metal)
3000 miles to cm ( 1 mile = 160934 cm) = 3000 miles × 160934 cm / 1 mile = 482802000 cm
density of Aluminium = 2.7 g /cm³
dislocation density of aluminum = 10¹⁰ cm³
mass of aluminum required = (482802000 cm × 2.7 g/cm³) / 10¹⁰ cm³ = 0.13 g
The most abundant carbon isotope is carbon-12.
The relative atomic mass of carbon is 12.011, which is extremely close to 12.0. This means that the masses C-13, and C-14 are practically negligible when contributing to the relative atomic mass of carbon.
the C-12 isotope makes up 98.9% of carbon atoms, C-13 makes up 1.1% of carbon atoms, and C-14 makes up just a trace of carbon atoms as they are found in nature.
Electrons and protons because they are essentially always the same
Answer:
36.51%.
Explanation:
First find the percentage of iron in pure Fe2O3 using the atomic masses of the elements:
= (2 * 55.845) * 100 / (2*55.845+ 3*15.999)
= 69.94 %.
So the percentage of iron in the mixture
= 52.2 * 0.6994
= 36.51 (answer).