23.934 Hours Is how long it tales.
Answer:
A. When water moves into a crack and freezes, it expands and forces the crack wider.
Explanation:
A crack in a rock can fill with water which then freezes as the temperature drops. As the ice expands, it pushes the crack apart, making the crack larger. When the temperature rises again, the ice melts, and the water fills the newer parts of the crack. Once the water freezes again when the temperature drops, the expansion of the ice causes further expansion to the crack.
First, let's count mole of 10 g Calcium Carbonate
mole = Mass / Molecular Mass
Calcium Carbonate = CaCO₃
Molecular Mass = Ar Ca + Ar C + (3 x Ar O)
Molecular Mass = 40 + 12 + (3 x 16)
Molecular Mass = 100
next
Mole of CaCO₃ = 10 gram / 100
Mole of CaCO₃ = 0,1 mol
then equal the reaction equation first
CaCO₃ + 2 HCl ==> CaCl₂ + CO₂ + H₂O (Equal)
To count the mass of carbon dioxide that produced we must know the mole of CO₂ first
we can count by coefficient comparison
mole CO₂ =
x mole CaCO₃
mole CO₂ = (1/1) x 0,1 mole
mole CO₂ = 0,1 mole
so
Mass of CO₂ = mole CO₂ x Molecular Mass of CO₂
Mass of CO₂ = 0,1 mole x (12 + (2 x 16))
Mass of CO₂ = 0,1 mole x 44
Mass of CO₂ = 4,4 g
so, mass of carbon dioxide that's produced by 10 g of calcium carbonate on reaction with chloride acid is 4,4 g.
Answer:
If you touch the knob of a positively charged electroscope with another positively charged object,the leaves of the electroscope would remain apart.
Answer:
1.91 atm
Explanation:
Step 1: Calculate Henry's constant (k)
A gas has a solubility (C) of 2.45 g/L at a pressure (P) of 0.750 atm. These two variables are related to each other through Henry's law.
C = k × P
K = C/P
K = (2.45 g/L)/0.750 atm = 3.27 g/L.atm
Step 2: Calculate the pressure required to produce an aqueous solution containing 6.25 g/L of this gas at constant temperature.
We have C = 6.25 g/L and k = 3.27 g/L.atm. The required pressure is:
C = k × P
P = C/k
P = (6.25 g/L)/(3.27 g/L.atm) = 1.91 atm