Answer:
<em>The probability of a bulb lasting for at most 552 hours.</em>
<em>P(x>552) = 0.0515</em>
Step-by-step explanation:
<u><em>Step(i):</em></u>-
Given mean of the life time of a bulb = 510 hours
Standard deviation of the lifetime of a bulb = 25 hours
Let 'X' be the random variable in normal distribution
Let 'x' = 552

<u><em>Step(ii):-</em></u>
<em>The probability of a bulb lasting for at most 552 hours.</em>
<em>P(x>552) = P(Z>1.63)</em>
<em> = 1- P( Z< 1.63)</em>
<em> = 1 - ( 0.5 + A(1.63)</em>
<em> = 1- 0.5 - A(1.63)</em>
<em> = 0.5 -A(1.63)</em>
<em> = 0.5 -0.4485</em>
<em> = 0.0515</em>
<u><em>Conclusion:-</em></u>
<em>The probability of a bulb lasting for at most 552 hours.</em>
<em>P(x>552) = 0.0515</em>
<em> </em>