1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Otrada [13]
3 years ago
14

In the equation for centripetal force, which expression represents the centripetal acceleration of the object? mv2 StartFraction

m over r EndFraction StartFraction v Superscript 2 Baseline over r EndFraction StartFraction m times v Superscript 2 Baseline over r EndFraction
Physics
2 answers:
Vinvika [58]3 years ago
8 0

Answer:

c

Explanation:

Sphinxa [80]3 years ago
3 0

Answer: \frac{V^{2}}{r}

Explanation:

According to Newton's 2nd Law of motion the force F is proportional to the mass Fm and acceleration a:

F=m.a (1)

On the other hand, the equation for the Centripetal force is:

F=\frac{mV^{2}}{r} (2)

Where:

V is the velocity

r is the radius of the circular motion

Making (1) and (2) equal:

m.a=\frac{mV^{2}}{r} (3)

Hence:

a=\frac{V^{2}}{r} This is the expression for the centripetal acceleration

It should be noted, this acceleration is directed toward the center of the circumference of the circular motion (that's why it's called centripetal acceleration).

You might be interested in
¿cual es la velocidad de un haz de electrones que marchan sin desviarse cuando pasan a traves de un campo magnetico perpendicula
Elina [12.6K]

Answer:

La velocidad del haz de electrones es 1.78x10⁵ m/s. Este valor se obtuvo asumiendo que el campo magnético dado (3500007) estaba en tesla y que la fuerza venía dada en nN.

Explanation:

Podemos encontrar la velocidad del haz de electrones usando la Ley de Lorentz:

F = |q|vBsin(\theta)     (1)

En donde:

F: es la fuerza magnética = 100 nN

q: es el módulo de la carga del electron = 1.6x10⁻¹⁹ C

v: es la velocidad del haz de electrones =?

B: es el campo magnético = 3500007 T

θ: es el ángulo entre el vector velocidad y el campo magnético = 90°

Introduciendo los valores en la ecuación (1) y resolviendo para "v" tenemos:

v = \frac{F}{qBsin(\theta)} = \frac{100 \cdot 10^{-9} N}{1.6 \cdot 10^{-19} C*3500007 T*sin(90)} = 1.78 \cdot 10^{5} m/s            

Este valor se calculó asumiendo que el campo magnético está dado en tesla (no tiene unidades en el enunciado). De igual manera se asumió que la fuerza indicada viene dada en nN.

Entonces, la velocidad del haz de electrones es 1.78x10⁵ m/s.  

Espero que te sea de utilidad!                                        

7 0
3 years ago
Familiarize yourself with the map showing the DSDP Leg 3 drilling locations and the position of the mid-ocean ridge (Figure 1 to
Inga [223]

Answer:

For more than 40 years, results from scientific ocean drilling have contributed to global understanding of Earth’s biological, chemical, geological, and physical processes and feedback mechanisms. The majority of these internationally recognized results have been derived from scientific ocean drilling conducted through three programs—the Deep Sea Drilling Project (DSDP; 1968-1983), the Ocean Drilling Program (ODP; 1984-2003), and the Integrated Ocean Drilling Program (IODP; 2003-2013)—that can be traced back to the first scientific ocean drilling venture, Project Mohole, in 1961. Figure 1.1 illustrates the distribution of drilling and sampling sites for each of the programs, and Appendix A presents tables of DSDP, ODP, and IODP legs and expeditions. Although each program has benefited from broad, international partnerships and research support, the United States has taken a leading role in providing financial continuity and administrative coordination over the decades that these programs have existed. Currently, the United States and Japan are the lead international partners of IODP, while a consortium of 16 European countries and Canada participates in IODP under the auspices of the European Consortium for Ocean Research Drilling (ECORD). Other countries (including China, Korea, Australia, New Zealand, and India) are also involved.

As IODP draws to a close in 2013, a new process for defining the scope of the next phase of scientific ocean drilling has begun. Illuminating Earth’s Past, Present, and Future: The International Ocean Discovery Program Science Plan for 2013-20231 (hereafter referred to as “the science plan”), which is focused on defining the scientific research goals of the next 10-year phase of scientific ocean drilling, was completed in June 2011 (IODP-MI, 2011). The science plan was based on a large, multidisciplinary international drilling community meeting held in September 2009.2 A draft of the plan was released in June 2010 to allow for additional comments from the broader geoscience community prior to its finalization. As part of the planning process for future scientific ocean drilling, the National Science Foundation (NSF) requested that the National Research Council (NRC) appoint an ad hoc committee (Appendix B) to review the scientific accomplishments of U.S.-supported scientific ocean drilling (DSDP, ODP, and IODP) and assess the science plan’s potential for stimulating future transformative scientific discoveries (see Box 1.1 for Statement of Task). According to NSF, “Transformative research involves ideas, discoveries, or tools that radically change our understanding of an important existing scientific or engineering concept or educational practice or leads to the creation of a new paradigm or field of science, engineering, or education. Such research challenges current understanding or provides pathways to new frontiers.”3 This report is the product of the committee deliberations on that review and assessment.

HISTORY OF U.S.-SUPPORTED SCIENTIFIC OCEAN DRILLING, 1968-2011

The first scientific ocean drilling, Project Mohole, was conceived by U.S. scientists in 1957. It culminated in drilling 183 m beneath the seafloor using the CUSS 1 drillship in 1961. During DSDP, Scripps Institution of Oceanography was responsible for drilling operations with the drillship Glomar Challenger. The Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which initially consisted of four U.S. universities and research institutions, provided scientific advice. Among its numerous achievements, DSDP

Explanation:

7 0
3 years ago
These types of electromagnetic waves are listed in order of increasing frequency:
xenn [34]

Answer:

B. X-rays

Explanation:

From the given choices, x-rays will have the highest energy of the given waves.

The energy of electromagnetic waves is highly dependent on their frequency and wavelength.

Electromagnetic waves with a high frequency and small wavelength will have higher energy compared to those with low frequency and high wavelength.

X-rays are one the most energetic waves on the periodic table. They have a very high frequency and low wavelength.

7 0
3 years ago
Read 2 more answers
Your cousin is moving into an apartment in San Francisco. This apartment is on a street that is angled at 25∘ above the horizont
Vesnalui [34]

Answer:

70

Explanation:

5 0
3 years ago
The force of replusion between two like charged particles will increase if​
Alex_Xolod [135]

Answer:

The distance of separation is decreased

Explanation:

From Cuolomb's law, we know that the strength of charge is inversely proportional to the distance of separation between the charges. To mean that increasing the distance let's say from 2m to 3 m would mean initial strength getting form 1/4 to 1/9 which is a decrease. The vice versa is true hence the force of repulsion can increase only when we decrease the distance of separation.

7 0
3 years ago
Other questions:
  • Identify the following as a suspension or a colloid. sand in water
    13·2 answers
  • you are moving fast on a skateboard when your wheel gets stuck in a crack on the sidewalk using the term inertia explain what ha
    14·2 answers
  • The potential difference between two parallel conducting plates in vacuum is 165 V. An alpha particle with mass of 6.50×10-27 kg
    7·1 answer
  • An electron in a vacuum chamber is fired with a speed of 9800 km/s toward a large, uniformly charged plate 75 cm away. The elect
    10·1 answer
  • Consider another special case in which the inclined plane is vertical (θ=π/2). In this case, for what value of m1 would the acce
    13·1 answer
  • Động cơ khởi động của một ô tô bị quay chậm , thợ cơ khí quyết định phải thay động cơ , dây cap hoặc acquy. Hướng dẫn sử dụng nó
    14·1 answer
  • g f, as a pioneer, you wished to warm your room by taking an object heated on top of a stove into it, which of the following 15
    13·1 answer
  • jennifer is trying out for the soccer team and really wants to make varsity. after tryouts she learns she is on the junior varsi
    6·1 answer
  • The first law of motion is also called as law _ fill up the blanks ​
    10·1 answer
  • How did black holes get their name
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!