Answer:
Explanation:
charge, q = 1.6 x 10^-19 C
distance, r = 911 nm = 911 x 10^-9 m
The Coulomb's force is given by


F = 2.78 x 10^-16 N
The force between the electron and the proton is 2.78 x 10^-16 N.
Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.
Answer:
I am explain you in image
Answer:
Explanation:
pressure decreases with increasing altitude. The pressure at any level in the atmosphere may be interpreted as the total weight of the air above a unit area at any elevation. At higher elevations, there are fewer air molecules above a given surface than a similar surface at lower levels.