Explanation:
You walk 53m to the north, then you turn 60° to your right and walk another 45m. Determine the direction of your displacement vector. Express your answer as an angle relative to east
1045
if this is actually if this is right tell me
<span>Assume: neglect of the collar dimensions.
Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa
τ=(S*Q)/(I*b)=(40*〖10〗^3*π(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(π/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa
@ Point K:
Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa
Using Mohr Circle:
Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 )
Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>
Answer:
80 ft/s
Explanation:
Use III equation of motion
V^2 = U^2 + 2g h
Here, U = 0, g = 32 ft/s^2, h = 100 ft
V^2 = 0 + 2 × 32 ×100
V^2 = 6400
V = 80 ft/s