This is not something that waves do because they need a medium to travel through, while particles do not.
<h3>How light travels in space?</h3>
A light travels without any medium while on the other hand, a medium is required for sound waves to move from oe place to another. Sound is a mechanical wave that cannot travel through a vacuum.
So we can conclude that electromagnetic waves like light do not require medium for its propagation.
Learn more about light here: brainly.com/question/19697218
Answer:
Approximately
, assuming that this gas is an ideal gas.
Explanation:
- Let
and
denote the volume and pressure of this gas before the compression. - Let
and
denote the volume and pressure of this gas after the compression.
By Boyle's Law, the pressure of a sealed ideal gas at constant temperature will be inversely proportional to its volume. Assume that this gas is ideal. By this ideal gas law:
.
Note that in Boyle's Law,
is inversely proportional to
. Therefore, on the two sides of this equation, "final" and "initial" are on different sides of the fraction bar.
For this particular question:
.
.
.- The pressure after compression,
, needs to be found.
Rearrange the equation to obtain:
.
Before doing any calculation, think whether the pressure of this gas will go up or down. Since the gas is compressed, collisions between its particles and the container will become more frequent. Hence, the pressure of this gas should increase.
.
Answer:
I don't know what you're asking, but I will try my best.
If Susan fertilizes her geranium plants, it will help them blossom. If she over-fertilizes them though, they will die. But yes, in general, they will blossom if Susan fertilizes her geranium plants.
Answer:
We conclude that the change in momentum of a body is equal to the impulse experienced by a body.
Explanation:
Considering the equation
F • t = m • Δ v
Here,
m • Δ v is basically a change in momentum of a body which is equal to the mass of the object multiplied by the change in its velocity.
Also,
- F • t is called the impulse of the object.
In the formula, it is clear that the impulse experienced by a body during the collision is basically a change in the momentum of the body.
In other words, the change in momentum of a body is equal to the impulse experienced by a body.
Therefore, we conclude that the change in momentum of a body is equal to the impulse experienced by a body.
Kepler's three laws of planetary motion can be stated as follows: (1) All planets move about the Sun in elliptical orbits, having the Sun as one of the foci. (2) A radius vector joining any planet to the Sun sweeps out equal areas in equal lengths of time.