brainliest plz
The Ring of Fire, also referred to as the Circum-Pacific Belt, is a path along the Pacific Ocean characterized by active volcanoes and frequent earthquakes. Its length is approximately 40,000 kilometers (24,900 miles). It traces boundaries between several tectonic plates—including the Pacific, Juan de Fuca, Cocos, Indian-Australian, Nazca, North American, and Philippine Plates.
Seventy-five percent of Earth’s volcanoes—more than 450 volcanoes—are located along the Ring of Fire. Ninety percent of Earth’s earthquakes occur along its path, including the planet’s most violent and dramatic seismic events.
The abundance of volcanoes and earthquakes along the Ring of Fire is caused by the amount of movement of tectonic plates in the area. Along much of the Ring of Fire, plates overlap at convergent boundaries called subduction zones. That is, the plate that is underneath is pushed down, or subducted, by the plate above. As rock is subducted, it melts and becomes magma. The abundance of magma so near to Earth’s surface gives rise to conditions ripe for volcanic activity. A significant exception is the border between the Pacific and North American Plates. This stretch of the Ring of Fire is a transform boundary, where plates move sideways past one another. This type of boundary generates a large number of earthquakes as tension in Earth’s crust builds up and is released.
the first bump car will move
Explanation:
this is because as long as the other bumper car is coming with force, it mass changes and then , it is able to push the other one
Answer:
Explanation:
i = Imax sin2πft
given i = 180 , Imax = 200 , f = 50 , t = ?
Put the give values in the equation above
180 = 200 sin 2πft
sin 2πft = .9
sin2π x 50t = .9
sin 360 x 50 t = sin ( 360n + 64 )
360 x 50 t = 360n + 64
360 x 50 t = 64 , ( putting n = 0 for least value of t )
18000 t = 64
t = 3.55 ms .
The intensity of the magnetic force exerted on the wire due to the presence of the magnetic field is given by

where
I is the current in the wire
L is the length of the wire
B is the magnetic field intensity

is the angle between the direction of the wire and the magnetic field
In our problem, L=65 cm=0.65 m, I=0.35 A and B=1.24 T. The force on the wire is F=0.26 N, therefore we can rearrange the equation to find the sine of the angle:

and so, the angle is
Answer:
When a light wave goes through a slit, it is diffracted, which means the slit opening acts as a new source of waves. How much a light wave diffracts<em> (how much it fans out)</em> depends on the wavelength of the incident light. The wavelength must be larger than the width of the slit for the maximum diffraction. Thus, for a given slit, red light, because it has a longer wavelength, diffracts more than the blue light.
The corresponding relation for diffraction is
,
where
is the wavelength of light,
is the slit width, and
is the diffraction angle.
From this relation we clearly see that the diffraction angle
is directly proportional to the wavelength
of light—longer the wavelength larger the diffraction angle.