Answer:
A compound can easily be split up into its different elements.
Explanation:
Answer:
1. d. The reaction is spontaneous in the reverse direction at all temperatures.
2. c. The reaction is spontaneous at low temperatures.
Explanation:
The spontaneity of a reaction is associated with the Gibbs free energy (ΔG). When ΔG < 0, the reaction is spontaneous. When ΔG > 0, the reaction is non-spontaneous. ΔG is related to the enthalpy (ΔH) and the entropy (ΔS) through the following expression:
ΔG = ΔH - T. ΔS [1]
where,
T is the absolute temperature (T is always positive)
<em>1. What can be said about an Endothermic reaction with a negative entropy change?</em>
If the reaction is endothermic, ΔH > 0. Let's consider ΔS < 0. According to eq. [1], ΔG is always positive. The reaction is not spontaneous in the forward direction at any temperature. This means that the reaction is spontaneous in the reverse direction at all temperatures.
<em>2. What can be said about an Exothermic reaction with a negative entropy change?</em>
If the reaction is exothermic, ΔH < 0. Let's consider ΔS < 0. According to eq. [1], ΔG will be negative when |ΔH| > |T.ΔS|, that is, at low temperatures.
An endothermic reaction needs energy to proceed, such energy is usually taken from the environment surrounding the reaction. In the typical case this energy is expressed as heat. Heat is an state of atomic activity, that energy is transferred to an ENDOthermic reaction so the initial threshold of reaction is overcome and the final reaction can occur.
Answer:
D) 1 iron(II), 2 chloride
Explanation:
Iron II chloride is the compound; FeCl2. It is formed as follows, ionically;
Fe^2+(aq) + 2Cl^-(aq) -----> FeCl2
The formation of one mole of FeCl2 involves the reaction one mole of iron and two moles of chloride ions. This means that in FeCl2, the ratio of iron to chlorine is 1:2 as seen above.
Therefore there is one iron II ion and two chloride ions in each mole of iron II chloride, hence the answer.
<h2>It would have an effect very much like over inflating a balloon. The space inside the Dyson Sphere would be overfilled with energy and the Sphere would be assaulted by energy that exceeds it's capacity to reflect it.</h2>