The first statement is False... as
For exothermic reaction :
A+B》 C+D + HEAT..(heat is considered as a product)... as for endo.. heat is a reactant.
So tjey can't be of the same energy...
2nd one...based on the
A+B》 C+D+HEAT...For exo reaction... the product have more Heat energy than potential...so its false
Recall...energy can nither be created nor destroyed but converted from one form to another....
The 4th one however is true for heat...the reactants have nore energy than the products..
A+B+HEAT》C+D
The electrons and the nuclei will settle into positions that minimize repulsion and maximize attraction.
Answer: conversion of ice to steam
Explanation: Endothermic process is one in which energy is absorbed by the system.
Conversion of ice to steam is change of solid phase to gaseous phase, thus energy is required to break the strong inter molecular forces of attraction in solids to convert it into gaseous phase.
Conversion of steam to ice, conversion of steam to water and conversion of water to ice releases energy and are examples of exothermic processes.
D) energy required to remove a valence electron
Explanation:
The ionization energy is the energy required to remove a valence electron from an element.
Different kinds of atoms bind their valence electrons with different amount of energy.
- To remove the electrons, energy must be supplied to the atom.
- The amount of energy required to remove the an electron in the valence shell is the ionization energy or ionization potential.
- The first ionization energy is the energy needed to remove the most loosely bound electron in an atom in the ground state.
- The ionization energy measures the readiness of an atom to loose electrons.
Learn more:
Ionization energy brainly.com/question/5880605
#learnwithBrainly
The group is might be labeled as VIIB or VIIA.