Answer:
La posición en la que se encuentra el móvil en el instante t = 30 s es 172 m.
Explanation:
El movimiento rectilíneo uniforme (MRU) es el movimiento que describe un cuerpo o partícula a través de una línea recta a velocidad constante.
La distancia recorrida, x
, por un móvil que tiene un MRU con un velocidad v durante el intervalo de tiempo t es:
x= x0 + v*t
donde x0 es la posición inicial.
En este caso:
Reemplazando:
x= 22 m + 5 m/s* 30 s
Resolviendo:
x= 22 m + 150 m
x= 172 m
<u><em>La posición en la que se encuentra el móvil en el instante t = 30 s es 172 m.</em></u>
Answer:
The tank is losing

Explanation:
According to the Bernoulli’s equation:
We are being informed that both the tank and the hole is being exposed to air :
∴ P₁ = P₂
Also as the tank is voluminous ; we take the initial volume
≅ 0 ;
then
can be determined as:![\sqrt{[2g (h_1- h_2)]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B2g%20%28h_1-%20h_2%29%5D)
h₁ = 5 + 15 = 20 m;
h₂ = 15 m
![v_2 = \sqrt{[2*9.81*(20 - 15)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%2820%20-%2015%29%5D)
![v_2 = \sqrt{[2*9.81*(5)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%285%29%5D)
as it leaves the hole at the base.
radius r = d/2 = 4/2 = 2.0 mm
(a) From the law of continuity; its equation can be expressed as:
J = 
J = πr²
J =
J =
b)
How fast is the water from the hole moving just as it reaches the ground?
In order to determine that; we use the relation of the velocity from the equation of motion which says:
v² = u² + 2gh
₂
v² = 9.9² + 2×9.81×15
v² = 392.31
The velocity of how fast the water from the hole is moving just as it reaches the ground is : 

It depends because it’s might be lolilolololol 21212132
Because it can pollute the air and cause wild life to eat stuff that has been contimanted by the air
Faster than. Hope this helps!!!