Answer:
89.53 North
Explanation:
Total N-S displacement
23.72 - 39.25 + 105.06 = + 89.53
Answer:
7.65x10^3 m/s
Explanation:
The computation of the satellite's orbital speed is shown below:
Given that
Earth mass, M_e = 5.97 × 10^24 kg
Gravitational constant, G = 6.67 × 10^-11 N·m^2/kg
Orbital radius, r = 6.80 × 10^6m
Based on the above information
the satellite's orbital speed is
V_o = √GM_e ÷ √r
= √6.67 × 10^-11 × 5.97 × 10^24 ÷ √6.80 × 10^6
= 7.65x10^3 m/s
I’m pretty sure it’s a starting point... unless it’s asking for an actual object
Answer:
37.7m/s: principle of conservation of momentum
Explanation:
The principle to make use of is the principle of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of momentum of bodies after collision. This bodies will move with the same velocity after collision.
Momentum = Mass × velocity
For car of mass 2200kg moving with velocity 33m/s:
Momentum of car before collision = 2200×33
= 72,600kgm/s
For the truck of mass 4500kg;
Momentum = 4500 ×(22-(-18)
= 4500×40
= 180000kgm/s
After collision, their momentum is:
Momentum after collision = (2200+4500)v
= 6700v
Using the principle above to get the common velocity v we have
72600+180000 = 6700v
252600 = 6700v
v = 252600/6700
v = 37.7m/s
The quicker the speed of an object, the more frequently it is hit by air molecules. this boost in frequency means the molecules push back, increasing the air resistance. If you need more help post a comment so I can help out!