1. At constant tempaerature and pressure, 3 tablets produce 600cm^3 of gas
Thus calculating for 1 tablet that produces 600 / 3 = 200 cm^3
So now two tablets produce 200 x 2 = 400 cm^3
2. We have the equation PV = nRT, n being the number of moles
Pressure P = 1,000 kPa
Volume V = 3 L
R = 8.31 L kPa/mol-K
Temperature T = 298 K
n = PV / RT = (1000 x 3) / (8.31 x 298) = 3000 / 2476.38 = 1.21 moles
Number of moles = 1.21 moles.
He thought elements that haven't been discovered belonged in the place of the gap. He could also use the atomic mass of the missing elements
Answer:
Option a. 0.5 m/s
Explanation:
This graph shows a straight line, where "Y" axis would be "Position" and "X" graph would be "Time". The ecuation that would describe this straight line is Y= aX + 1 , where "a" is the slope or inclination for this graph, and would give us the speed of the object
How do we find the slope (and hence, the speed)?: if you notice this graph, you will check that:
-When X (Time) is zero, Y (Position) is 1
-When X (Time) is 2, Y (Position) is 2
With these 4 points, you can calculate the slope (which will call "m") for this graph with:
m = (Y2-Y1)/(X2-X1) so: Y2=2, Y1=1, X2=2, X1=0
Which gives us: m=1/2 (0.5), the slope or speed of the object: 0.5 m/s
2.24 liters is the volume of the gas if pressure is increased to 1000 Torr.
Explanation:
Data given:
Initial volume of the gas V1 = 2.6 liters
Initial pressure of the gas P1 = 860 Torr 1.13 atm
final pressure on the gas P2 = 1000 Torr 1.315 atm
final volume of the gas after pressure change V2 =?
From the data given above, the law used is :
Boyles Law equation:
P1V1 = P2V2
V2 = P1V1/P2
= 1.13 X 2.6/ 1.31
= 2.24 Liters
If the pressure is increased to 1000 Torr or 1.315 atm the volume changes to 2.24 liters. Initially the volume was 2.6 litres and the pressure was 860 torr.